A fractional-order multifunctionaln-step honeycomb RLC circuit network
Ling ZHOU, Zhi-zhong TAN, Qing-hua ZHANG
A fractional-order multifunctionaln-step honeycomb RLC circuit network
We investigate a multifunctional n-step honeycomb network which has not been studied before. By adjusting the circuit parameters, such a network can be transformed into several different networks with a variety of functions, such as a regular ladder network and a triangular network. We derive two new formulae for equivalent resistance in the resistor network and equivalent impedance in the LC network, which are in the fractional-order domain. First, we simplify the complex network into a simple equivalent model. Second, using Kirchhoff’s laws, we establish a fractional difference equation. Third, we construct an equivalent transformation method to obtain a general solution for the nonlinear differential equation. In practical applications, several interesting special results are obtained. In particular, ann-step impedance LC network is discussed and many new characteristics of complex impedance have been found.
Honeycomb network / Equivalent transformation / Fractional differential equation / Impedance characteristics
[1] |
Asad,J.H., 2013a. Exact evaluation of the resistance in an infinite face-centered cubic network.J. Stat. Phys., 150(6):1177–1182. https://doi.org/10.1007/s10955-013-0716-x
|
[2] |
Asad,J.H., 2013b. Infinite simple 3D cubic network of identical capacitors.Mod. Phys. Lett. B, 27(15):151350112. https://doi.org/10.1142/S0217984913501121
|
[3] |
Asad,J.H., Diab,A.A., Hijjawi,R.S. ,
|
[4] |
Biswas,K., Sen,S., Dutta,P., 2006. Realization of a constant phase element and its performance study in a differentiator circuit.IEEE Trans. Circ. Syst. II, 53(9):802–806. https://doi.org/10.1109/TCSII.2006.879102
|
[5] |
Chen,P., He,S.B., 2013. Analysis of the fractional-order parallel tank circuit.J. Circ. Syst. Comput., 22(6): 1350047. https://doi.org/10.1142/S0218126613500473
|
[6] |
Cserti,J., 2000. Application of the lattice Green’s function for calculating the resistance of an infinite network of resistors.Am. J. Phys., 68(10):896–906. https://doi.org/10.1119/1.1285881
|
[7] |
Elshurafa,A.M., Almadhoun, M.N., Salama,K.N. ,
|
[8] |
Essam,J.W., Tan,Z.Z., Wu,F.Y., 2014. Resistance between two nodes in general position on an m×n fan network.Phys. Rev. E, 90(3):032130. https://doi.org/10.1103/PhysRevE.90.032130
|
[9] |
Essam,J.W., Nsh,I., Kenna,R.,
|
[10] |
Gabelli,J., Fève, G., Berroir,J.M. ,
|
[11] |
Izmailian,N.S., Huang, M.C., 2010. Asymptotic expansion for the resistance between two maximum separated nodes on an M×N resistor network.Phys. Rev. E, 82(1 Pt 1): 011125. https://doi.org/10.1103/PhysRevE.82.011125
|
[12] |
Izmailian,N.S., Kenna, R., 2014. A generalised formulation of the Laplacian approach to resistor networks.J. Stat. Mech. Theor. Exp., 9(9):P09016. https://doi.org/10.1088/1742-5468/2014/09/P09016
|
[13] |
Izmailian,N.S., Kenna, R., Wu,F.Y. , 2014. The two-point resistance of a resistor network: a new formulation and application to the cobweb network.J. Phys. A, 47(3): 035003. https://doi.org/10.1088/1751-8113/47/3/035003
|
[14] |
Jia,H.Y., Chen,Z.Q., Qi,G.Y., 2013. Topological horseshoe analysis and circuit realization for a fractional-order Lu system.Nonl. Dynam., 74(1-2):203–212. https://doi.org/10.1007/s11071-013-0958-9
|
[15] |
Klein,D.J., Randi, M., 1993. Resistance distance.J. Math. Chem., 12(1):81–95. https://doi.org/10.1007/BF01164627
|
[16] |
Machado,J.A.T., Galhano, A.M.S.F., 2012. Fractional order inductive phenomena based on the skin effect.Nonl. Dynam., 68(1):107–115. https://doi.org/10.1007/s11071-011-0207-z
|
[17] |
Radwan,A.G., Salama, K.N., 2011. Passive and active elements using fractional LβCα circuit.IEEE Trans. Circ. Syst. I, 58(10):2388–2397. https://doi.org/10.1109/TCSI.2011.2142690
|
[18] |
Radwan,A.G., Salama, K.N., 2012. Fractional-order RC and RL circuit.Circ. Syst. Signal Process., 31(6):1901–1915. https://doi.org/10.1007/s00034-012-9432-z
|
[19] |
Tan,Z.Z., 2011. Resistor Network Model. Xidian University Press, Xi’an, China, p.28–88 (in Chinese).
|
[20] |
Tan,Z.Z., 2012. A universal formula of the n-th power of 2×2 matrix and its applications.J. Nantong Univ., 11(1): 87–94. https://doi.org/10.3969/j.issn.1673-2340.2012.01.018
|
[21] |
Tan,Z.Z., 2015a. Recursion-transform approach to compute the resistance of a resistor network with an arbitrary boundary.Chin. Phys. B, 24(2):020503. https://doi.org/10.1088/1674-1056/24/2/020503
|
[22] |
Tan,Z.Z., 2015b. Recursion-transform method for computing resistance of the complex resistor network with three arbitrary boundaries.Phys. Rev. E, 91(5):052122. https://doi.org/10.1103/PhysRevE.91.052122
|
[23] |
Tan,Z.Z., 2015c. Recursion-transform method to a nonregular m×n cobweb with an arbitrary longitude.Sci. Rep., 5:11266. https://doi.org/10.1038/srep11266
|
[24] |
Tan,Z.Z., 2015d. Theory on resistance of m×n cobweb network and its application.Int. J. Circ. Theor. Appl., 43(11): 1687–1702. https://doi.org/10.1002/cta.2035
|
[25] |
Tan,Z.Z., 2016. Two-point resistance of an m×n resistor network with an arbitrary boundary and its application in RLC network.Chin. Phys. B, 25(5):050504. https://doi.org/10.1088/1674-1056/25/5/050504
|
[26] |
Tan,Z.Z., Fang,J.H., 2015. Two-point resistance of a cobweb network with a 2r boundary.Theor. Phys., 63(1):36–44. https://doi.org/10.1103/PhysRevE.90.012130
|
[27] |
Tan,Z.Z., Zhang, Q.H., 2015. Formulae of resistance between two corner nodes on a common edge of the m×n rectangular network.Int. J. Circ. Theor. Appl., 43(7):944–958. https://doi.org/10.1002/cta.1988
|
[28] |
Tan,Z.Z., Zhou,L., Yang,J.H., 2013. The equivalent resistance of a 3×n cobweb network and its conjecture of an m×n cobweb network.J. Phys. A, 46(19):195202. https://doi.org/10.1088/1751-8113/46/19/195202
|
[29] |
Tan,Z.Z., Essam, J.W., Wu,F.Y. , 2014. Two-point resistance of a resistor network embedded on a globe.Phys. Rev. E, 90(1):012130. https://doi.org/10.1103/PhysRevE.90.012130
|
[30] |
Tan,Z.Z., Zhou,L., Luo,D.F., 2015. Resistance and capacitance of 4×n cobweb network and two conjectures.Int. J. Circ. Theor. Appl., 43(3):329–341. https://doi.org/10.1002/cta.1943
|
[31] |
Tzeng,W.J., Wu,F.Y., 2006. Theory of impedance networks: the two-point impedance and LC resonances.J. Phys. A, 39(27):8579. https://doi.org/10.1088/0305-4470/39/27/002
|
[32] |
Wang,F.Q., Ma,X.K., 2013. Modeling and analysis of the fractional order buck converter in DCM operation by using fractional calculus and the circuit-averaging technique.J. Power Electron., 13(6):1008–1015. https://doi.org/10.6113/JPE.2013.13.6.1008
|
[33] |
Whan,C.B., Lobb,C.J., 1996. Complex dynamical behavior in RCL shunted Josephson tunnel junctions.Phys. Rev. E, 5(2):405–413. https://doi.org/10.1103/PhysRevE.53.405
|
[34] |
Wu,F.Y., 2004. Theory of resistor networks: the two-point resistance.J. Phys. A, 37(26):6653–6673. https://doi.org/10.1088/0305-4470/37/26/004
|
[35] |
Xiao,W.J., Gutman, I., 2003. Resistance distance and Laplacian spectrum.Theor. Chem. Acc., 110(4):284–289. https://doi.org/10.1007/s00214-003-0460-4
|
[36] |
Zhou,P., Huang, K., 2014. A new 4-D non-equilibrium fractional-order chaotic system and its circuit implementation.Commun. Nonl. Sci. Numer. Simul., 19(6):2005–2011. https://doi.org/10.1016/j.cnsns.2013.10.024
|
[37] |
Zhuang,J., Yu,G.R., Nakayama,K. , 2014. A series RCL circuit theory for analyzing non-steady-state water uptake of maize plants.Sci. Rep., 4(4):6720. https://doi.org/10.1038/srep06720
|
/
〈 | 〉 |