Situational awareness architecture for smart grids developed in accordance with dispatcher’s thought process: a review

You-bo LIU, Jun-yong LIU, Gareth TAYLOR, Ting-jian LIU, Jing GOU, Xi ZHANG

PDF(1708 KB)
PDF(1708 KB)
Front. Inform. Technol. Electron. Eng ›› 2016, Vol. 17 ›› Issue (11) : 1107-1121. DOI: 10.1631/FITEE.1601516
Review
Review

Situational awareness architecture for smart grids developed in accordance with dispatcher’s thought process: a review

Author information +
History +

Abstract

The operational environment of today’s smart grids is becoming more complicated than ever before. A number of factors, including renewable penetration, marketization, cyber security, and hazards of nature, bring challenges and even threats to control centers. New techniques are anticipated to help dispatchers become aware of the accurate situations as they manipulate and navigate the situations as quickly as possible. To address the issues, we first introduce the background for this topic as well as the emerging technical demands of situational awareness in the dispatcher’s environment. The general concepts and technical requirements of situational awareness are then summarized, aimed at offering an overview for readers to understand the state-of-the-art progress in this area. In addition, we discuss the importance of integrating the architecture of support tools in accordance with the dispatcher’s thought process, which in fact guides correct and swift reactions in real-time operations. Finally, the prospects for situational awareness architecture are investigated with the goal of presenting situational awareness modules in an advanced and visualized manner.

Keywords

Smart grid / Situational awareness / Dispatcher’s thought process / Technical architecture

Cite this article

Download citation ▾
You-bo LIU, Jun-yong LIU, Gareth TAYLOR, Ting-jian LIU, Jing GOU, Xi ZHANG. Situational awareness architecture for smart grids developed in accordance with dispatcher’s thought process: a review. Front. Inform. Technol. Electron. Eng, 2016, 17(11): 1107‒1121 https://doi.org/10.1631/FITEE.1601516

References

[1]
Albano, M., Ferreira, L.L., Pinho, L.M., 2015. Convergence of smart grid ICT architectures for the last mile. IEEE Trans. Ind. Inform., 11(1):187–197. http://dx.doi.org/10.1109/TII.2014.2379436
[2]
Bera, S., Misra, S., Rodrigues, J.J.P.C., 2015. Cloud computing applications for smart grid: a survey. IEEE Trans. Parall. Distr. Syst. , 26(5):1477–1494. http://dx.doi.org/10.1109/TPDS.2014.2321378
[3]
Britton, J., Brown, P., Moseley, J., , 2016. Optimizing operations with CIM: today’s grid relies on network analysis (and a lot of data). IEEE Power Energy Mag., 14(1):48–57. http://dx.doi.org/10.1109/MPE.2015.2481783
[4]
Chen, Q.Q., Yin, X.G., You, D.H., , 2009. Review on blackout process in China southern area main power grid in 2008 snow disaster. IEEE Power & Energy Society General Meeting, p.1–8. http://dx.doi.org/10.1109/PES.2009.5275700
[5]
Chompoobutrgool, Y., Vanfretti, L., 2013. Identification of power system dominant inter-area oscillation paths. IEEE Trans. Power Syst., 28(3):2798–2807. http://dx.doi.org/10.1109/TPWRS.2012.2227840
[6]
Dahal, N., Abuomar, O., King, R., , 2015. Event stream processing for improved situational awareness in the smart grid. Expert Syst. Appl., 42(20):6853–6863. http://dx.doi.org/10.1016/j.eswa.2015.05.003
[7]
Deese, A.S., Nwankpa, C.O., 2014. Development of custom FPAA hardware for faster-than real-time analysis of power system dynamics. IEEE PES General Meeting | Confe. & Exposition, p.1–5. http://dx.doi.org/10.1109/PESGM.2014.6939094
[8]
de la Ree, J., Liu, Y.L., Mili, L., , 2005. Catastrophic failures in power systems: causes, analyses, and countermeasures. Proc. IEEE, 93(5):956–964. http://dx.doi.org/10.1109/JPROC.2005.847246
[9]
Dutta, S., Overbye, T.J., 2014. Feature extraction and visualization of power system transient stability results. IEEE Trans. Power Syst., 29(2):966–973. http://dx.doi.org/10.1109/TPWRS.2013.2283276
[10]
Endsley, M.R., 1995. Towards a theory of situation awareness in dynamic systems. Human Factors, 37(1):32–64. http://dx.doi.org/10.1518/001872095779049543
[11]
Evangelopoulos, V.A., Georgilakis, P.S., 2014. Optimal distributed generation placement under uncertainties based on point estimate method embedded genetic algorithm. IET. Gener. Transm. Distr., 8(3):389–400. http://dx.doi.org/10.1049/iet-gtd.2013.0442
[12]
Giri, J., 2015. Proactive management of the future grid. IEEE Power Energy Technol. Syst. J., 2(2):43–52. http://dx.doi.org/10.1109/JPETS.2015.2408212
[13]
Giri, J., Parashar, M., Trehern, J., , 2012. The situation room: control center analytics for enhanced situational awareness. IEEE Power Energy Mag., 10(5):24–39. http://dx.doi.org/10.1109/MPE.2012.2205316
[14]
Gungor, V.C., Sahin, D., Kocak, T., , 2013. A survey on smart grid potential applications and communication requirements. IEEE Trans. Ind. Inform., 9(1):28–42. http://dx.doi.org/10.1109/TII.2012.2218253
[15]
Guo, J.H., Zhang, Y., Young, M.A., , 2015. Design and implementation of a real-time off-grid operation detection tool from a wide-area measurements perspective. IEEE Trans. Power Syst., 6(4):2080–2087. http://dx.doi.org/10.1109/TSG.2014.2350913
[16]
Gutierrez-Martinez, V.J., Canizares, C.A., Fuerte-Esquivel, C.R., , 2011. Neural-network security-boundary constrained optimal power flow. IEEE Trans Power Syst., 26(1):63–72. http://dx.doi.org/10.1109/TPWRS.2010.2050344
[17]
Hauss, Y., Eyferth, K., 2003. Securing future ATM-concepts’ safety by measuring situation awareness in ATC. Aerosp. Sci. Technol., 7(6):417–427. http://dx.doi.org/10.1016/S1270-9638(02)00011-1
[18]
Holsopple, J., Sudit, M., Nusinov, M., , 2010. Enhancing situation awareness via automated situation assessment. IEEE Commun. Mag., 48(3):146–152. http://dx.doi.org/10.1109/MCOM.2010.5434386
[19]
Huang, Y.H., Zhou, X.X., 2015. Knowledge model for electric power big data based ontology and semantic web. CSEE J. Power Energy Syst., 1(1):19–27. http://dx.doi.org/10.17775/CSEEJPES.2015.00003
[20]
Kaci, A., Kamwa, I., Dessaint, L.A., , 2014. Synchrophasor data baselining and mining for online monitoring of dynamic security limits. IEEE Trans. Power Syst., 29(6):2681–2695. http://dx.doi.org/10.1109/TPWRS.2014.2312418
[21]
Kalyani, S., Swarup, K.S., 2013. Pattern analysis and classification for security evaluation in power networks. Int. J. Electr. Power Energy Syst., 44(1):547–560. http://dx.doi.org/10.1016/j.ijepes.2012.07.065
[22]
Kezunovic, M., 2011. Translational knowledge: from collecting data to making decisions in a smart grid. Proc. IEEE, 99(6):977–997. http://dx.doi.org/10.1109/JPROC.2011.2112631
[23]
Kezunovic, M., Bose, A., 2013. The future EMS design requirements. 46th Hawaii Int. Conf. on System Sciences, p.2354–2363. http://dx.doi.org/10.1109/HICSS.2013.520
[24]
Kokar, M.M., Endsley, M.R., 2012. Situation awareness and cognitive modeling. IEEE Intell. Syst., 27(3):91–96. http://dx.doi.org/10.1109/MIS.2012.61
[25]
Kong, X.B., Liu, X.J., Lee, K.Y., 2014. Data-driven modeling of a doubly fed induction generator wind turbine system based on neural networks. IET Renew. Power Gener., 8(8):849–857. http://dx.doi.org/10.1049/iet-rpg.2013.0391
[26]
Kundur, P., Paserba, J., Ajjarapu, V., , 2004. Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions. IEEE Trans. Power Syst., 19(3):1387–1401. http://dx.doi.org/10.1109/TPWRS.2004.825981
[27]
Liu, Y., Liu, Y., Liu, J., , 2016. High-performance predictor for critical unstable generators based on scalable parallelized neural networks. J. Modern Power Syst. Clean Energy, 4(3):414–426. http://dx.doi.org/10.1007/s40565-016-0209-4
[28]
Lu, N., Du, P.W., Greitzer, F.L., , 2012. A multi-layer, data-driven advanced reasoning tool for intelligent data mining and analysis for smart grids. IEEE Power and Energy Society General Meeting, p.1–7. http://dx.doi.org/10.1109/PESGM.2012.6345180
[29]
Makarov, Y.V., Reshetov, V.I., Stroev, V.A., , 2005. Blackouts in North America and Europe: analysis and generalization. IEEE Power Tech, p.1–7. http://dx.doi.org/10.1109/PTC.2005.4524782
[30]
Makarov, Y.V., Du, P.W., Lu, S., , 2012. PMU-based wide-area security assessment: concept, method, and implementation. IEEE Trans. Smart Grid, 3(3):1325–1332. http://dx.doi.org/10.1109/TSG.2012.2193145
[31]
Matar, M., Iravani, R., 2013. The reconfigurable-hardware real-time and faster-than-real-time simulator for the analysis of electromagnetic transients in power systems. IEEE Trans. Power Del., 28(2):619–627. http://dx.doi.org/10.1109/TPWRD.2012.2229723
[32]
McDonald, J.D., Rajagopalan, S., Waizenegger, J.R., , 2007. Realizing the power of data marts. IEEE Power Energy Mag., 5(3):57–66. http://dx.doi.org/10.1109/MPAE.2007.365821
[33]
Moray, N., Vincenzi, D.A., Mouloua, M., , 2004. Human Performance, Situation Awareness and Automation: Current Research and Trends. LEA, Mahwah.
[34]
Morison, K., Wang, L., Kundur, P., 2004. Power system security assessment. IEEE Power Energy Mag., 2(5):30–39. http://dx.doi.org/10.1109/MPAE.2004.1338120
[35]
Moulin, L.S., da Silva, A.P.A., El-Sharkawi, M.A., , 2004. Support vector machines for transient stability analysis of large-scale power systems. IEEE Trans. Power Syst., 19(2):818–825. http://dx.doi.org/10.1109/TPWRS.2004.826018
[36]
Olek, B., Wierzbowski, M., 2015. Local energy balancing and ancillary services in low-voltage networks with distributed generation, energy storage, and active loads. IEEE Trans. Ind. Electron., 62(4):2499–2508. http://dx.doi.org/10.1109/TIE.2014.2377134
[37]
Ortega-Vazquez, M.A., Bouffard, F., Silva, V., 2013. Electric vehicle aggregator/system operator coordination for charging scheduling and services procurement. IEEE Trans. Power Syst., 28(2):1806–1815. http://dx.doi.org/10.1109/TPWRS.2012.2221750
[38]
Panteli, M., Kirschen, D.S., 2015. Situation awareness in power systems: theory, challenges and applications. Electr. Power Syst. Res., 122:140–151. http://dx.doi.org/10.1016/j.epsr.2015.01.008
[39]
Panteli, M., Crossley, P.A., Kirschen, D.S., , 2013. Assessing the impact of insufficient situation awareness on power system operation. IEEE Trans. Power Syst., 28(3):2967–2977. http://dx.doi.org/10.1109/TPWRS.2013.2240705
[40]
Sarmadi, S.A.N., Dobakhshari, A.S., Azizi, S., , 2011. A sectionalizing method in power system restoration based on WAMS. IEEE Trans. Smart Grid, 2(1):190–197. http://dx.doi.org/10.1109/TSG.2011.2105510
[41]
Schneiders, C., Vanzetta, J., Verstege, J.F., 2012. Enhancement of situation awareness in wide area transmission systems for electricity and visualization of the global system state. Proc. 3rd IEEE PES Int. Conf. and Exhibition on Innovative Smart Grid Technologies, p.1–9. http://dx.doi.org/10.1109/ISGTEurope.2012.6465665
[42]
Shafie-khah, M., Catalão, J.P.S., 2015. A stochastic multi-layer agent-based model to study electricity market participants behavior. IEEE Trans. Power Syst., 30(2):867–881. http://dx.doi.org/10.1109/TPWRS.2014.2335992
[43]
Shahriar Muttalib, A.Z.M., Taylor, G., Bradley, M., 2013. Investigating scalable computational tools and infrastructure to enable interoperable and secure control of large-scale power systems. 48th Int. Universities’ Power Engineering Conf. , p.1–6. http://dx.doi.org/10.1109/UPEC.2013.6715043
[44]
Shetty, R., Fan, J.Y., McDonald J.D., 2012. Improving utility operational excellence through non-operational data management. IEEE PES Innovative Smart Grid Technologies, p.1–6. http://dx.doi.org/10.1109/ISGT.2012.6175623
[45]
Shi, X.Y., Li, Y., Cao, Y.J., , 2015. Cyber-physical electrical energy systems: challenges and issues. CSEE J. Power Energy Syst., 1(2):36–42. http://dx.doi.org/10.17775/CSEEJPES.2015.00017
[46]
Sodhi, R., Sharieff, M.I., 2015. Phasor measurement unit placement framework for enhanced wide-area situational awareness. IET Gener. Transm. Distr., 9(2):172–182. http://dx.doi.org/10.1049/iet-gtd.2014.0215
[47]
Sule, M.J., Li, M.Z., Taylor, G.A., , 2015. Deploying trusted cloud computing for data intensive power system applications. 50th Int. Universities Power Engineering Conf. , p.1–5. http://dx.doi.org/10.1109/UPEC.2015.7339864
[48]
Tesseron, J.M., 2008. Mission: reliability. IEEE Power Energy Mag., 6(1):42–48. http://dx.doi.org/10.1109/MPAE.2008.4412939
[49]
Tian, F., Zhang, X., Yu, Z.H., , 2016. Online decision-making and control of power system stability based on super-real-time simulation. CSEE J. Power Energy Syst., 2(1):95-103. http://dx.doi.org/10.17775/CSEEJPES.2016.00014
[50]
Ummels, B.C., Gibescu, M., Pelgrum, E., , 2007. Impacts of wind power on thermal generation unit commitment and dispatch. IEEE Trans. Energy Conv., 22(1):44–51. http://dx.doi.org/10.1109/TEC.2006.889616
[51]
Vellaithurai, C., Srivastava, A., Zonouz, S., , 2015. CPIndex: cyber-physical vulnerability assessment for power-grid infrastructures. IEEE Trans. Smart Grid, 6(2):566–575. http://dx.doi.org/10.1109/TSG.2014.2372315
[52]
Verma, K., Niazi, K.R., 2012. Supervised learning approach to online contingency screening and ranking in power systems. Int. J. Electr. Power Energy Syst., 38(1):97–104. http://dx.doi.org/10.1016/j.ijepes.2011.12.025
[53]
Vidulich, M., Dominguez, C., Vogel, E., , 1994. Situation Awareness: Papers and Annotated Bibliography. Report No. AL/CF-TR-1994-0085. Armstrong Laboratory, Human System Center, CA.
[54]
Wan, C., Zhao, J., Song, Y.H., , 2015. Photovoltaic and solar power forecasting for smart grid energy management. CSEE J. Power Energy Syst., 1(4):38–46. http://dx.doi.org/10.17775/CSEEJPES.2015.00046
[55]
Wang, W.Y., Barnes, M., Marjanovic, O., , 2016. Impact of DC breaker systems on multiterminal VSC-HVDC stability. IEEE Trans Power Del., 31(2):769–779. http://dx.doi.org/10.1109/TPWRD.2015.2409132
[56]
Wang, Y.X., Wang, Y., 2006. Cognitive informatics models of the brain. IEEE Trans. Syst. Man Cybern. Part C, 36(2):203–207. http://dx.doi.org/10.1109/TSMCC.2006.871151
[57]
Yin, J., Lampert, A., Cameron, M., , 2012. Using social media to enhance emergency situation awareness. IEEE Intell. Syst., 27(6):52–59. http://dx.doi.org/10.1109/MIS.2012.6
[58]
Zhao, X.Y., Zhou, H.F., Shi, D., , 2015. On-line PMU-based transmission line parameter identification. CSEE J. Power Energy Syst., 1(2):68–74. http://dx.doi.org/10.17775/CSEEJPES.2015.00021
[59]
Zheng, X.S., McConkie, G.W., Tayi, Y., 2004. Dynamic monitoring of traffic flow: the driver’s situation awareness. Proc. 5th Human Performance, Situation Awareness and Automation Conf.
[60]
Zhu, J., Zhuang, E., Ivanov, C., , 2011. A Data-driven approach to interactive visualization of power systems. IEEE Trans. Power Syst., 26(4):2539–2546. http://dx.doi.org/10.1109/TPWRS.2011.2119499
[61]
ZigBee Alliance, 2013. Smart Energy Profile 2.0 (ZigBee SEP 2.0). Application Protocol Standard.

RIGHTS & PERMISSIONS

2016 Zhejiang University and Springer-Verlag Berlin Heidelberg
PDF(1708 KB)

Accesses

Citations

Detail

Sections
Recommended

/