Situational awareness architecture for smart grids developed in accordance with dispatcher’s thought process: a review
You-bo LIU, Jun-yong LIU, Gareth TAYLOR, Ting-jian LIU, Jing GOU, Xi ZHANG
Situational awareness architecture for smart grids developed in accordance with dispatcher’s thought process: a review
The operational environment of today’s smart grids is becoming more complicated than ever before. A number of factors, including renewable penetration, marketization, cyber security, and hazards of nature, bring challenges and even threats to control centers. New techniques are anticipated to help dispatchers become aware of the accurate situations as they manipulate and navigate the situations as quickly as possible. To address the issues, we first introduce the background for this topic as well as the emerging technical demands of situational awareness in the dispatcher’s environment. The general concepts and technical requirements of situational awareness are then summarized, aimed at offering an overview for readers to understand the state-of-the-art progress in this area. In addition, we discuss the importance of integrating the architecture of support tools in accordance with the dispatcher’s thought process, which in fact guides correct and swift reactions in real-time operations. Finally, the prospects for situational awareness architecture are investigated with the goal of presenting situational awareness modules in an advanced and visualized manner.
Smart grid / Situational awareness / Dispatcher’s thought process / Technical architecture
[1] |
Albano, M., Ferreira, L.L., Pinho, L.M., 2015. Convergence of smart grid ICT architectures for the last mile. IEEE Trans. Ind. Inform., 11(1):187–197. http://dx.doi.org/10.1109/TII.2014.2379436
|
[2] |
Bera, S., Misra, S., Rodrigues, J.J.P.C., 2015. Cloud computing applications for smart grid: a survey. IEEE Trans. Parall. Distr. Syst. , 26(5):1477–1494. http://dx.doi.org/10.1109/TPDS.2014.2321378
|
[3] |
Britton, J., Brown, P., Moseley, J.,
|
[4] |
Chen, Q.Q., Yin, X.G., You, D.H.,
|
[5] |
Chompoobutrgool, Y., Vanfretti, L., 2013. Identification of power system dominant inter-area oscillation paths. IEEE Trans. Power Syst., 28(3):2798–2807. http://dx.doi.org/10.1109/TPWRS.2012.2227840
|
[6] |
Dahal, N., Abuomar, O., King, R.,
|
[7] |
Deese, A.S., Nwankpa, C.O., 2014. Development of custom FPAA hardware for faster-than real-time analysis of power system dynamics. IEEE PES General Meeting | Confe. & Exposition, p.1–5. http://dx.doi.org/10.1109/PESGM.2014.6939094
|
[8] |
de la Ree, J., Liu, Y.L., Mili, L.,
|
[9] |
Dutta, S., Overbye, T.J., 2014. Feature extraction and visualization of power system transient stability results. IEEE Trans. Power Syst., 29(2):966–973. http://dx.doi.org/10.1109/TPWRS.2013.2283276
|
[10] |
Endsley, M.R., 1995. Towards a theory of situation awareness in dynamic systems. Human Factors, 37(1):32–64. http://dx.doi.org/10.1518/001872095779049543
|
[11] |
Evangelopoulos, V.A., Georgilakis, P.S., 2014. Optimal distributed generation placement under uncertainties based on point estimate method embedded genetic algorithm. IET. Gener. Transm. Distr., 8(3):389–400. http://dx.doi.org/10.1049/iet-gtd.2013.0442
|
[12] |
Giri, J., 2015. Proactive management of the future grid. IEEE Power Energy Technol. Syst. J., 2(2):43–52. http://dx.doi.org/10.1109/JPETS.2015.2408212
|
[13] |
Giri, J., Parashar, M., Trehern, J.,
|
[14] |
Gungor, V.C., Sahin, D., Kocak, T.,
|
[15] |
Guo, J.H., Zhang, Y., Young, M.A.,
|
[16] |
Gutierrez-Martinez, V.J., Canizares, C.A., Fuerte-Esquivel, C.R.,
|
[17] |
Hauss, Y., Eyferth, K., 2003. Securing future ATM-concepts’ safety by measuring situation awareness in ATC. Aerosp. Sci. Technol., 7(6):417–427. http://dx.doi.org/10.1016/S1270-9638(02)00011-1
|
[18] |
Holsopple, J., Sudit, M., Nusinov, M.,
|
[19] |
Huang, Y.H., Zhou, X.X., 2015. Knowledge model for electric power big data based ontology and semantic web. CSEE J. Power Energy Syst., 1(1):19–27. http://dx.doi.org/10.17775/CSEEJPES.2015.00003
|
[20] |
Kaci, A., Kamwa, I., Dessaint, L.A.,
|
[21] |
Kalyani, S., Swarup, K.S., 2013. Pattern analysis and classification for security evaluation in power networks. Int. J. Electr. Power Energy Syst., 44(1):547–560. http://dx.doi.org/10.1016/j.ijepes.2012.07.065
|
[22] |
Kezunovic, M., 2011. Translational knowledge: from collecting data to making decisions in a smart grid. Proc. IEEE, 99(6):977–997. http://dx.doi.org/10.1109/JPROC.2011.2112631
|
[23] |
Kezunovic, M., Bose, A., 2013. The future EMS design requirements. 46th Hawaii Int. Conf. on System Sciences, p.2354–2363. http://dx.doi.org/10.1109/HICSS.2013.520
|
[24] |
Kokar, M.M., Endsley, M.R., 2012. Situation awareness and cognitive modeling. IEEE Intell. Syst., 27(3):91–96. http://dx.doi.org/10.1109/MIS.2012.61
|
[25] |
Kong, X.B., Liu, X.J., Lee, K.Y., 2014. Data-driven modeling of a doubly fed induction generator wind turbine system based on neural networks. IET Renew. Power Gener., 8(8):849–857. http://dx.doi.org/10.1049/iet-rpg.2013.0391
|
[26] |
Kundur, P., Paserba, J., Ajjarapu, V.,
|
[27] |
Liu, Y., Liu, Y., Liu, J.,
|
[28] |
Lu, N., Du, P.W., Greitzer, F.L.,
|
[29] |
Makarov, Y.V., Reshetov, V.I., Stroev, V.A.,
|
[30] |
Makarov, Y.V., Du, P.W., Lu, S.,
|
[31] |
Matar, M., Iravani, R., 2013. The reconfigurable-hardware real-time and faster-than-real-time simulator for the analysis of electromagnetic transients in power systems. IEEE Trans. Power Del., 28(2):619–627. http://dx.doi.org/10.1109/TPWRD.2012.2229723
|
[32] |
McDonald, J.D., Rajagopalan, S., Waizenegger, J.R.,
|
[33] |
Moray, N., Vincenzi, D.A., Mouloua, M.,
|
[34] |
Morison, K., Wang, L., Kundur, P., 2004. Power system security assessment. IEEE Power Energy Mag., 2(5):30–39. http://dx.doi.org/10.1109/MPAE.2004.1338120
|
[35] |
Moulin, L.S., da Silva, A.P.A., El-Sharkawi, M.A.,
|
[36] |
Olek, B., Wierzbowski, M., 2015. Local energy balancing and ancillary services in low-voltage networks with distributed generation, energy storage, and active loads. IEEE Trans. Ind. Electron., 62(4):2499–2508. http://dx.doi.org/10.1109/TIE.2014.2377134
|
[37] |
Ortega-Vazquez, M.A., Bouffard, F., Silva, V., 2013. Electric vehicle aggregator/system operator coordination for charging scheduling and services procurement. IEEE Trans. Power Syst., 28(2):1806–1815. http://dx.doi.org/10.1109/TPWRS.2012.2221750
|
[38] |
Panteli, M., Kirschen, D.S., 2015. Situation awareness in power systems: theory, challenges and applications. Electr. Power Syst. Res., 122:140–151. http://dx.doi.org/10.1016/j.epsr.2015.01.008
|
[39] |
Panteli, M., Crossley, P.A., Kirschen, D.S.,
|
[40] |
Sarmadi, S.A.N., Dobakhshari, A.S., Azizi, S.,
|
[41] |
Schneiders, C., Vanzetta, J., Verstege, J.F., 2012. Enhancement of situation awareness in wide area transmission systems for electricity and visualization of the global system state. Proc. 3rd IEEE PES Int. Conf. and Exhibition on Innovative Smart Grid Technologies, p.1–9. http://dx.doi.org/10.1109/ISGTEurope.2012.6465665
|
[42] |
Shafie-khah, M., Catalão, J.P.S., 2015. A stochastic multi-layer agent-based model to study electricity market participants behavior. IEEE Trans. Power Syst., 30(2):867–881. http://dx.doi.org/10.1109/TPWRS.2014.2335992
|
[43] |
Shahriar Muttalib, A.Z.M., Taylor, G., Bradley, M., 2013. Investigating scalable computational tools and infrastructure to enable interoperable and secure control of large-scale power systems. 48th Int. Universities’ Power Engineering Conf. , p.1–6. http://dx.doi.org/10.1109/UPEC.2013.6715043
|
[44] |
Shetty, R., Fan, J.Y., McDonald J.D., 2012. Improving utility operational excellence through non-operational data management. IEEE PES Innovative Smart Grid Technologies, p.1–6. http://dx.doi.org/10.1109/ISGT.2012.6175623
|
[45] |
Shi, X.Y., Li, Y., Cao, Y.J.,
|
[46] |
Sodhi, R., Sharieff, M.I., 2015. Phasor measurement unit placement framework for enhanced wide-area situational awareness. IET Gener. Transm. Distr., 9(2):172–182. http://dx.doi.org/10.1049/iet-gtd.2014.0215
|
[47] |
Sule, M.J., Li, M.Z., Taylor, G.A.,
|
[48] |
Tesseron, J.M., 2008. Mission: reliability. IEEE Power Energy Mag., 6(1):42–48. http://dx.doi.org/10.1109/MPAE.2008.4412939
|
[49] |
Tian, F., Zhang, X., Yu, Z.H.,
|
[50] |
Ummels, B.C., Gibescu, M., Pelgrum, E.,
|
[51] |
Vellaithurai, C., Srivastava, A., Zonouz, S.,
|
[52] |
Verma, K., Niazi, K.R., 2012. Supervised learning approach to online contingency screening and ranking in power systems. Int. J. Electr. Power Energy Syst., 38(1):97–104. http://dx.doi.org/10.1016/j.ijepes.2011.12.025
|
[53] |
Vidulich, M., Dominguez, C., Vogel, E.,
|
[54] |
Wan, C., Zhao, J., Song, Y.H.,
|
[55] |
Wang, W.Y., Barnes, M., Marjanovic, O.,
|
[56] |
Wang, Y.X., Wang, Y., 2006. Cognitive informatics models of the brain. IEEE Trans. Syst. Man Cybern. Part C, 36(2):203–207. http://dx.doi.org/10.1109/TSMCC.2006.871151
|
[57] |
Yin, J., Lampert, A., Cameron, M.,
|
[58] |
Zhao, X.Y., Zhou, H.F., Shi, D.,
|
[59] |
Zheng, X.S., McConkie, G.W., Tayi, Y., 2004. Dynamic monitoring of traffic flow: the driver’s situation awareness. Proc. 5th Human Performance, Situation Awareness and Automation Conf.
|
[60] |
Zhu, J., Zhuang, E., Ivanov, C.,
|
[61] |
ZigBee Alliance, 2013. Smart Energy Profile 2.0 (ZigBee SEP 2.0). Application Protocol Standard.
|
/
〈 | 〉 |