Asystematic review of structured sparse learning
Lin-bo QIAO, Bo-feng ZHANG, Jin-shu SU, Xi-cheng LU
Asystematic review of structured sparse learning
High dimensional data arising from diverse scientific research fields and industrial development have led to increased interest in sparse learning due to model parsimony and computational advantage. With the assumption of sparsity, many computational problems can be handled efficiently in practice. Structured sparse learning encodes the structural information of the variables and has been quite successful in numerous research fields. With various types of structures discovered, sorts of structured regularizations have been proposed. These regularizations have greatly improved the efficacy of sparse learning algorithms through the use of specific structural information. In this article, we present a systematic review of structured sparse learning including ideas, formulations, algorithms, and applications. We present these algorithms in the unified framework of minimizing the sum of loss and penalty functions, summarize publicly accessible software implementations, and compare the computational complexity of typical optimization methods to solve structured sparse learning problems. In experiments, we present applications in unsupervised learning, for structured signal recovery and hierarchical image reconstruction, and in supervised learning in the context of a novel graph-guided logistic regression.
Sparse learning / Structured sparse learning / Structured regularization
[1] |
Asaei,A., Bourlard, H., Cevher,V. , 2011a. Modelbased compressive sensing for multi-party distant speech recognition. Proc. ICASSP, p.4600–4603. http://dx.doi.org/10.1109/ICASSP.2011.5947379
|
[2] |
Asaei,A., Taghizadeh, M.J., Bourlard,H. ,
|
[3] |
Asaei,A., Bourlard, H., Taghizadeh,M.J. ,
|
[4] |
Asaei,A., Golbabaee, M., Bourlard,H. ,
|
[5] |
Bach,F., 2008a. Consistency of trace norm minimization. J. Mach. Learn. Res., 9:1019–1048.
|
[6] |
Bach,F., 2008b. Consistency of the group Lasso and multiple kernel learning. J. Mach. Learn. Res., 9:1179–1225.
|
[7] |
Bach,F., Jenatton, R., Mairal,J. ,
|
[8] |
Bach,F., Jenatton, R., Mairal,J. ,
|
[9] |
Bach,F., Jenatton, R., Mairal,J. ,
|
[10] |
Bach,F., Jordan, M.I., 2006. Learning spectral clustering, with application to speech separation. J. Mach. Learn. Res., 7:1963–2001.
|
[11] |
Banerjee,O., El Ghaoui, L., d’Aspremont,A., 2008. Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. J. Mach. Learn. Res., 9:485–516.
|
[12] |
Baraniuk,R.G., Cevher, V., Duarte,M.F. ,
|
[13] |
Beck,A., Teboulle, M., 2003. Mirror descent and nonlinear projected subgradient methods for convex optimization. Oper. Res. Lett., 31(3):167–175. http://dx.doi.org/10.1016/S0167-6377(02)00231-6
|
[14] |
Beck,A., Teboulle, M., 2009. A fast iterative shrinkagethresholding algorithm for linear inverse problems. SIAM J. Imag. Sci., 2(1):183–202. http://dx.doi.org/10.1137/080716542
|
[15] |
Bengio,S., Pereira, F., Singer,Y. ,
|
[16] |
Blei,D.M., Griffiths, T.L., Jordan,M.I. , 2010. The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies. J. ACM, 57(2):7. http://doi.acm.org/10.1145/1667053.1667056
|
[17] |
Borne,K., 2009. Scientific data mining in astronomy. arXiv:0911.0505.
|
[18] |
Boyd,S., Parikh, N., Chu,E. ,
|
[19] |
Bruckstein,A.M., Donoho, D.L., Elad,M. , 2009. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev., 51(1):34–81. http://dx.doi.org/10.1137/060657704
|
[20] |
Candès,E., Tao, T., 2007. The Dantzig selector: statistical estimation when p is much larger than n. Ann. Stat., 35(6):2313–2351. http://dx.doi.org/10.1214/009053606000001523
|
[21] |
Candès,E.J., 2008. The restricted isometry property and its implications for compressed sensing. Comput. Rend. Math., 346(9-10):589–592. http://dx.doi.org/10.1016/j.crma.2008.03.014
|
[22] |
Candès,E.J., Recht, B., 2009. Exact matrix completion via convex optimization. Found. Comput. Math., 9(6):717–772. http://dx.doi.org/10.1007/s10208-009-9045-5
|
[23] |
Candès,E.J., Romberg, J.K., Tao,T. , 2006. Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math., 59(8):1207–1223. http://dx.doi.org/10.1002/Cpa.20124
|
[24] |
Candès,E.J., Wakin, M.B., Boyd,S.P. , 2008. Enhancing sparsity by reweighted _1 minimization. J. Four. Anal. Appl., 14(5):877–905. http://dx.doi.org/10.1007/s00041-008-9045-x
|
[25] |
Chandrasekaran,V., Parrilo, P.A., Willsky,A.S. , 2012. Latent variable graphical model selection via convex optimization. Ann. Stat., 40(4):1935–1967. http://dx.doi.org/10.1214/11-AOS949
|
[26] |
Chartrand,R.,Yin,W.T., 2008. Iteratively reweighted algorithms for compressive sensing. Proc. ICASSP, p.3869–3872. http://dx.doi.org/10.1109/Icassp.2008.4518498
|
[27] |
Chen,C., Huang, J.Z., 2014. Exploiting the wavelet structure in compressed sensing MRI. Magn. Reson. Imag., 32(10):1377–1389. http://dx.doi.org/10.1016/j.mri.2014.07.016
|
[28] |
Chen,C., Li,Y.Q., Huang,J.Z. , 2014. Forest sparsity for multi-channel compressive sensing. IEEE Trans. Signal Process., 62(11):2803–2813. http://dx.doi.org/10.1109/TSP.2014.2318138
|
[29] |
Chen,H.Y., Sun,Z.G., Yi,F.,
|
[30] |
Chen,S., Donoho, D., 1994. Basis pursuit. Proc. Asilomar Conf. on Signals, Systems and Computers, p.41–44.
|
[31] |
Chen,X., Lin,Q.H., Kim,S.,
|
[32] |
Combettes,P.L., Pesquet, J.C., 2011. Proximal splitting methods in signal processing. In: Bauschke, H.H., Burachik, R.S., Combettes, P.L.,
|
[33] |
Dempster,A.P., 1972. Covariance selection. Biometrics, 28:157–175.
|
[34] |
Donoho,D.L., Huo,X., 2001. Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inform. Theory, 47(7):2845–2862. http://dx.doi.org/10.1109/18.959265
|
[35] |
Donoho,D.L, Drori, I., Stodden,V.C ,
|
[36] |
Duarte,M.F., Eldar, Y.C., 2011. Structured compressed sensing: from theory to applications. IEEE Trans.Signal Process., 59(9):4053–4085. http://dx.doi.org/10.1109/TSP.2011.2161982
|
[37] |
Elad,M., 2010. Sparse and Redundant Representations: from Theory to Applications in Signal and Image Processing. Springer, Berlin. http://dx.doi.org/10.1007/978-1-4419-7011-4
|
[38] |
Fan,J.Q., Li,R.Z., 2011. Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am.Stat. Assoc., 96(456):1348–1360. http://dx.doi.org/10.1198/016214501753382273
|
[39] |
Fan,J.Q., Lv,J.C., Qi,L., 2011. Sparse high-dimensional models in economics. Ann. Rev. Econ., 3:291–317. http://dx.doi.org/10.1146/annurev-economics-061109-080451
|
[40] |
Foucart,S., Lai,M.J., 2009. Sparsest solutions of underdetermined linear systems via lq -minimization for 0<q≤1. Appl. Comput. Harmon. Anal., 26(3):395–407. http://dx.doi.org/10.1016/j.acha.2008.09.001
|
[41] |
Friedman,J., Hastie, T., Höling,H. ,
|
[42] |
Friedman,J., Hastie, T., Tibshirani,R. , 2008. Sparse inverse covariance estimation with the graphical Lasso. Biostatistics, 9(3):432–441. http://dx.doi.org/10.1093/biostatistics/kxm045
|
[43] |
Garber,D., Hazan, E., 2015. Faster rates for the Frank-Wolfe method over strongly-convex sets. Proc. ICML, p.541–549.
|
[44] |
Gill,P.E., Murray, W., Saunders,M.A. , 2008. User’s Guide for SQOPT Version 7: Software for Large-Scale Linear and Quadratic Programming. http://www-leland.stanford.edu/group/SOL/guides/sqdoc7.pdf
|
[45] |
Gong,P.H., Zhang, C.S., Lu,Z.S. ,
|
[46] |
Grant,M., Boyd,S., 2013. CVX: Matlab Software for Disciplined Convex Programming. Version 2.0 Beta. http://cvxr.com/cvx/
|
[47] |
Hazan,E., Agarwal, A., Kale,S. , 2007. Logarithmic regret algorithms for online convex optimization. Mach. Learn., 69(2):169–192. http://dx.doi.org/10.1007/s10994-007-5016-8
|
[48] |
Hoefling,H., 2010. A path algorithm for the fused Lasso signal approximator. J. Comput. Graph. Stat., 19(4):984–1006. http://dx.doi.org/10.1198/jcgs.2010.09208
|
[49] |
Hong,M.Y., Razaviyayn, M., Luo,Z.Q. ,
|
[50] |
Hu,T.C., Yu,J.H., 2016. Max-margin based Bayesian classifier. Front. Inform. Technol. Electron. Eng., 17(10): 973–981. http://dx.doi.org/10.1631/FITEE.1601078
|
[51] |
Huang,J.Z., Zhang, T., Metaxas,D. , 2011. Learning with structured sparsity. J. Mach. Learn. Res., 12:3371–3412.
|
[52] |
Huang,T., Wu,B.L., Lizardi,P. ,
|
[53] |
Jacob,L., Obozinski, G., Vert,J.P. , 2009. Group Lasso with overlap and graph Lasso. Proc. ICML, p.433–440. http://dx.doi.org/10.1145/1553374.1553431
|
[54] |
Jaggi,M., 2013. Revisiting Frank-Wolfe: projection-free sparse convex optimization. Proc. ICML, p.427–435.
|
[55] |
Jenatton,R., 2011. Structured Sparsity-Inducing Norms: Statistical and Algorithmic Properties with Applications to Neuroimaging. PhD Thesis, école Normale Supérieure de Cachan, Cachan, France.
|
[56] |
Jenatton,R., Obozinski, G., Bach,F. , 2009. Structured sparse principal component analysis. Proc. AISTATS, p.366–373.
|
[57] |
Jenatton,R., Mairal, J., Bach,F.R. ,
|
[58] |
Jenatton,R., Mairal, J., Obozinski,G. ,
|
[59] |
Jenatton,R., Gramfort, A., Michel,V. ,
|
[60] |
John Lu,Z.Q., 2010. The elements of statistical learning: data mining, inference, and prediction. J. R. Stat. Soc. A, 173(3):693–694. http://dx.doi.org/10.1111/j.1467-985X.2010.00646_6.x
|
[61] |
Jones,B., West,M., 2005. Covariance decomposition in undirected Gaussian graphical models. Biometrika, 92(4): 779–786. https://doi.org/10.1093/biomet/92.4.779
|
[62] |
Karygianni,S., Frossard, P., 2014. Structured sparse coding for image denoising or pattern detection. Proc. ICASSP, p.3533–3537. http://dx.doi.org/10.1109/ICASSP.2014.6854258
|
[63] |
Kim,B.S., Park,J.Y., Gilbert,A.C. ,
|
[64] |
Kim,S., Xing,E.P., 2010. Tree-guided group Lasso for multi-task regression with structured sparsity. Proc. ICML, p.543–550.
|
[65] |
Kim,S., Xing,E.P., 2012. Tree-guided group Lasso for multi-response regression with structured sparsity, with an application to eQTL mapping. Ann. Appl. Stat., 6(3):1095–1117. http://dx.doi.org/10.1214/12-Aoas549
|
[66] |
Kim,S., Xing,E.P., 2014. Exploiting genome structure in association analysis. J. Comput. Biol., 21(4):345–360. http://dx.doi.org/10.1089/cmb.2009.0224
|
[67] |
Kolar,M., Xing,E.P., 2011. On time varying undirected graphs. Proc. AISTATS, p.407–415.
|
[68] |
Koren,Y., Bell,R., Volinsky,C. , 2009. Matrix factorization techniques for recommender systems. Computer, 42(8):30–37. http://dx.doi.org/10.1109/MC.2009.263
|
[69] |
Lacoste-Julien,S., Schmidt, M., Bach,F. , 2012. A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method. arXiv:1212.2002.
|
[70] |
Lai,M.J., Xu,Y.Y., Yin,W.T., 2013. Improved iteratively reweighted least squares for unconstrained smoothed lq minimization. SIAM J. Numer. Anal., 51(2):927–957. http://dx.doi.org/10.1137/110840364
|
[71] |
Lai,Z.Q., Lam,K.T., Wang,C.L.,
|
[72] |
Lai,Z.Q., Lam,K.T., Wang,C.L.,
|
[73] |
Leng,C.L., Tang,C.Y., 2012. Sparse matrix graphical models. J. Am. Stat. Assoc., 107(499):1187–1200. http://dx.doi.org/10.1080/01621459.2012.706133
|
[74] |
Li,X.X., Mo,L.L., Yuan,X.M.,
|
[75] |
Lin,H.Z., Mairal, J.L., Harchaoui,Z. , 2015. A universal catalyst for first-order optimization. Proc. NIPS, p.3384–3392.
|
[76] |
Liu,H., Palatucci, M., Zhang,J. , 2009. Blockwise coordinate descent procedures for the multi-task Lasso, with applications to neural semantic basis discovery. Proc. ICML, p.649–656. http://dx.doi.org/10.1145/1553374.1553458
|
[77] |
Liu,J., Ji,S., Ye,J., 2009. SLEP: Sparse Learning with Efficient Projections. http://www.public.asu.edu/~jye02/Software/SLEP
|
[78] |
Ma,S.Q., Xue,L.Z., Zou,H., 2013. Alternating direction methods for latent variable Gaussian graphical model selection. Neur. Comput., 25(8):2172–2198. http://dx.doi.org/10.1162/NECO_a_00379
|
[79] |
Mairal,J., 2013. Optimization with first-order surrogate functions. Proc. ICML, p.783–791.
|
[80] |
Mairal,J., Bach,F., Ponce,J.,
|
[81] |
Mairal,J., Bach,F., Ponce,J., 2014. Sparse modeling for image and vision processing. Found. Trends Comput. Graph. Vis., 8(2-3):85–283. http://dx.doi.org/10.1561/0600000058
|
[82] |
Mallat,S., 2008. A Wavelet Tour of Signal Processing: the Sparse Way (3rd Ed.). Elsevier/Academic Press, Amsterdam.
|
[83] |
McAuley,J., Ming,J., Stewart,D. ,
|
[84] |
Meier,L., van de Geer, S., Bühlmann,P. , 2008. The group Lasso for logistic regression. J. R. Stat. Soc. B, 70(1):53–71. http://dx.doi.org/10.1111/j.1467-9868.2007.00627.x
|
[85] |
Meinshausen,N., Bühlmann, P., 2006. High-dimensional graphs and variable selection with the Lasso. Ann. Stat., 34(3):1436–1462. http://dx.doi.org/10.1214/009053606000000281
|
[86] |
Meinshausen,N., Yu, B., 2008. Lasso-type recovery of sparse representations for high-dimensional data. Ann. Stat., 37(1):246–270. http://dx.doi.org/10.1214/07-AOS582
|
[87] |
Micchelli,C.A., Morales, J.M., Pontil,M. , 2013. Regularizers for structured sparsity. Adv. Comput. Math., 38(3):455–489. http://dx.doi.org/10.1007/s10444-011-9245-9
|
[88] |
Mosci,S., Rosasco, L., Santoro,M. ,
|
[89] |
Mougeot,M., Picard, D., Tribouley,K. , 2013. Grouping strategies and thresholding for high dimensional linear models. J. Stat. Plan. Infer., 143(9):1417–1438. http://dx.doi.org/10.1016/j.jspi.2013.03.001
|
[90] |
Najafian,M., 2016. Acoustic Model Selection for Recognition of Regional Accented Speech. PhD Thesis, University of Birmingham, Birmingham, UK.
|
[91] |
Negahban,S.N., Ravikumar, P., Wainwright,M.J. ,
|
[92] |
Nemirovski,A., 2004. Prox-method with rate of convergence O(1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM J. Optim., 15(1):229–251. http://dx.doi.org/10.1137/S1052623403425629
|
[93] |
Nesterov,Y., 2004. Introductory Lectures on Convex Optimization: a Basic Course.Springer Science & Business Media. http://dx.doi.org/10.1007/978-1-4419-8853-9
|
[94] |
Nesterov,Y., 2009. Primal-dual subgradient methods for convex problems. Math. Program., 120(1):221–259. http://dx.doi.org/10.1007/s10107-007-0149-x
|
[95] |
Parikh,N., Boyd,S., 2014. Proximal algorithms. Found. Trends Optim., 1(3):127–239. http://dx.doi.org/10.1561/2400000003
|
[96] |
Peng,Z.M., Wu,T.Y., Xu,Y.Y.,
|
[97] |
Qiao,L.B., Lin,T.Y., Jiang,Y.G. ,
|
[98] |
Qiao,L.B., Zhang, B.F., Su,J.S. ,
|
[99] |
Qiao,L.B., Zhang, B.F., Zhuang,L. ,
|
[100] |
Rakotomamonjy,A., 2011. Surveying and comparing simultaneous sparse approximation (or group-Lasso) algorithms. Signal Process., 91(7):1505–1526. http://dx.doi.org/10.1016/j.sigpro.2011.01.012
|
[101] |
Rasmussen,C.E., Ghahramani, Z., 2001. Occam’s razor. Proc. NIPS, p.294–300.
|
[102] |
Rendle,S., Schmidt-Thieme, L., 2010. Pairwise interaction tensor factorization for personalized tag recommendation. Proc. 3rd ACM Int. Conf. on Web Wearch and Data Mining, p.81–90. http://dx.doi.org/10.1145/1718487.1718498
|
[103] |
Roth,V., Fischer, B., 2008. The group-Lasso for generalized linear models: uniqueness of solutions and efficient algorithms. Proc. ICML, p.848–855. http://dx.doi.org/10.1145/1390156.1390263
|
[104] |
Rudin,L.I., Osher, S., Fatemi,E. , 1992. Nonlinear total variation based noise removal algorithms. Phys. D, 60(1-4):259–268. http://dx.doi.org/10.1016/0167-2789(92)90242-F
|
[105] |
Scheinberg,K., Ma,S., Goldfarb,D. , 2010. Sparse inverse covariance selection via alternating linearization methods. Proc. NIPS, p.2101–2109.
|
[106] |
Selesnick,I.W., Bayram, I., 2014. Sparse signal estimation by maximally sparse convex optimization. IEEE Trans. Signal Process., 62(5):1078–1092. http://dx.doi.org/10.1109/TSP.2014.2298839
|
[107] |
Simon,N., Friedman, J., Hastie,T. ,
|
[108] |
Su,W.J., Boyd,S., Candès,E. , 2014. A differential equation for modeling Nesterov’s accelerated gradient method: theory and insights. Proc. NIPS, p.2510–2518.
|
[109] |
Sun,Y.P., Chen,S.H., Han,B.,
|
[110] |
Sun,Y.P., Zhang, B.F., Zhao,B.K. ,
|
[111] |
Suzuki,T.J., 2013. Dual averaging and proximal gradient descent for online alternating direction multiplier method. Proc. ICML, p.392–400.
|
[112] |
Takacs,G., Pilaszy, I., Nemeth,B. ,
|
[113] |
Tibshirani,R., 1996. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. B, 58(1):267–288.
|
[114] |
Tibshirani,R., Wang,P., 2008. Spatial smoothing and hot spot detection for CGH data using the fused Lasso. Biostatistics, 9(1):18–29. http://dx.doi.org/10.1093/biostatistics/kxm013
|
[115] |
Tibshirani,R., Saunders, M., Rosset,S. ,
|
[116] |
Toh,K., Todd,M.J., Tütüncü,R.H. , 2006. SDPT3 Version 4.0: a Matlab Software for Semidefinite-Quadratic-Linear Programming. http://www.math.nus.edu.sg/~mattohkc/sdpt3.html
|
[117] |
Tropp,J.A., 2004. Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inform. Theory, 50(10):2231–2242. http://dx.doi.org/10.1109/Tit.2004.834793
|
[118] |
Tropp,J.A., Gilbert, A.C., Muthukrishnan,S. ,
|
[119] |
Tseng,P., 2008. On Accelerated Proximal Gradient Methods for Convex-Concave Optimization. http://www.mit.edu/~dimitrib/PTseng/papers/apgm.pdf
|
[120] |
Tseng,P., Yun,S., 2009. A coordinate gradient descent method for nonsmooth separable minimization. Math. Program., 117(1):387–423. http://dx.doi.org/10.1007/s10107-007-0170-0
|
[121] |
van den Berg,E., Friedlander, M.P., 2007. SPGL1: a Solver for Large-Scale Sparse Reconstruction. http://www.cs.ubc.ca/labs/scl/spgl1
|
[122] |
Villa,S., Rosasco, L., Mosci,S. ,
|
[123] |
Vincent,M., Hansen, N.R., 2014. Sparse group Lasso and high dimensional multinomial classification. Comput. Stat. Data Anal., 71:771–786. http://dx.doi.org/10.1016/j.csda.2013.06.004
|
[124] |
Wainwright,M.J., Jordan, M.I., 2008. Graphical models, exponential families, and variational inference. Found. Trend. Mach. Learn., 1(1-2):1–305. http://dx.doi.org/10.1561/2200000001
|
[125] |
Wang,H.S., Leng,C.L., 2008. A note on adaptive group Lasso. Comput. Stat. Data Anal., 52(12):5277–5286. http://dx.doi.org/10.1016/j.csda.2008.05.006
|
[126] |
Wang,L.C., You,Y., Lian,H., 2013. A simple and efficient algorithm for fused Lasso signal approximator with convex loss function. Comput. Stat., 28(4):1699–1714. http://dx.doi.org/10.1007/s00180-012-0373-6
|
[127] |
Wang,Y., Wang,J.J., Xu,Z.B., 2013. On recovery of blocksparsesignals via mixed l2lq (0<q≤1) norm minimization. EURASIP J. Adv. Signal Process., 2013: 1–17. http://dx.doi.org/10.1186/1687-6180-2013-76
|
[128] |
Wen,Z., Goldfarb, D., Scheinberg,K. , 2012. Block coordinate descent methods for semidefinite programming. In: Anjos, M.F., Lasserre, J.B. (Eds.), Handbook on Semidefinite, Conic and Polynomial Optimization. Springer US, Boston, p.533–564. http://dx.doi.org/10.1007/978-1-4614-0769-0_19
|
[129] |
Wermuth,N., 1976. Analogies between multiplicative models for contingency tables and covariance selection. Biometrics, 32:95–108.
|
[130] |
Wille,A., Bühlmann, P., 2006. Low-order conditional independence graphs for inferring genetic networks. Stat. Appl. Genet. Mol. Biol., 5(1). http://dx.doi.org/10.2202/1544-6115.1170
|
[131] |
Wrinch,D., Jeffreys, H., 1921. On certain fundamental principles of scientific inquiry. Phil. Mag., 42(249):369–390. http://dx.doi.org/10.1080/14786442108633773
|
[132] |
Wu,Y.L., Lu,X.C., Su,J.S.,
|
[133] |
Xiao,J.J., Qiao,L.B., Stolkin,R. ,
|
[134] |
Xiao,L., Zhang, T., 2014. A proximal stochastic gradient method with progressive variance reduction. SIAM J. Optim., 24(4):2057–2075. http://dx.doi.org/10.1137/140961791
|
[135] |
Xie,H., Tong,R.F., 2016. Image meshing via hierarchical optimization. Front. Inform. Technol. Electron. Eng., 17(1):32–40. http://dx.doi.org/10.1631/FITEE.1500171
|
[136] |
Xie,Y.C., Huang, H., Hu,Y. ,
|
[137] |
Xie,Z.X., Xu,Y., 2014. Sparse group Lasso based uncertain feature selection. Int. J. Mach. Learn. Cybern., 5(2):201–210. http://dx.doi.org/10.1007/s13042-013-0156-6
|
[138] |
Xu,X., Zhang, B.F., Zhong,Q.X. , 2005. Text categorization using SVMs with Rocchio ensemble for Internet information classification. LNCS, 3619:1022–1031. http://dx.doi.org/10.1007/11534310_107
|
[139] |
Xu,X., Hu,D.W., Lu,X.C., 2007. Kernel-based least squares policy iteration for reinforcement learning. IEEE Trans. Neur. Netw., 18(4):973–992. http://dx.doi.org/10.1109/tnn.2007.899161
|
[140] |
Xu,X., Liu,C.M., Yang,S.X.,
|
[141] |
Xu,Z., Chang, X., Xu,F. ,
|
[142] |
Yang,J.F., Yuan,X.M., 2013. Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization. Math. Comput., 82:301–329. http://dx.doi.org/10.1090/S0025-5718-2012-02598-1
|
[143] |
Yang,X.J., Liao,X.K., Xu,W.X.,
|
[144] |
Yang,X.J., Liao,X.K., Lu,K.,
|
[145] |
Ye,G.B., Xie,X.H., 2011. Split Bregman method for large scale fused Lasso. Comput. Stat. Data Anal., 55(4):1552–1569. http://dx.doi.org/10.1016/j.csda.2010.10.021
|
[146] |
Yuan,M., Lin,Y., 2006. Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. B, 68(1):49–67. http://dx.doi.org/10.1111/j.1467-9868.2005.00532.x
|
[147] |
Yuan,M., Lin,Y., 2007. Model selection and estimation in the Gaussian graphical model. Biometrika, 94(1):19–35. http://dx.doi.org/10.1093/biomet/asm018
|
[148] |
Yuan,M., Yang,B.X., Ma,Y.D.,
|
[149] |
Zhang,B.F., Su,J.S., Xu,X., 2006. A class-incremental learning method for multi-class support vector machines in text classification. Proc. ICMLC, p.2581–2585. http://dx.doi.org/10.1109/ICMLC.2006.258853
|
[150] |
Zhang,C.H., 2010. Nearly unbiased variable selection under minimax concave penalty. Ann. Stat., 38(2):894–942. http://dx.doi.org/10.1214/09-AOS729
|
[151] |
Zhang,S.Z., Wang,K., Chen,B.L.,
|
[152] |
Zhang,T., 2009. Some sharp performance bounds for least squares regression with L1 regularization. Ann. Stat., 37(5A):2109–2144. http://dx.doi.org/10.1214/08-AOS659
|
[153] |
Zhang,T., 2010. Analysis of multi-stage convex relaxation for sparse regularization. J. Mach. Learn. Res., 11:1081–1107.
|
[154] |
Zhang,T., 2013. Multi-stage convex relaxation for feature selection. Bernoulli, 19(5B):2277–2293. http://dx.doi.org/10.3150/12-BEJ452
|
[155] |
Zhang,T.Z.,Ghanem, B., Liu,S. ,
|
[156] |
Zhang,T.Z., Ghanem, B., Liu,S. ,
|
[157] |
Zhang,T.Z., Jia,K., Xu,C.S.,
|
[158] |
Zhang,T.Z., Liu,S., Ahuja,N.,
|
[159] |
Zhang,T.Z., Liu,S., Xu,C.S.,
|
[160] |
Zhang,Y., Yang,J., Yin,W., 2011. YALL1: Your Algorithms for L1. http://yall1.blogs.rice.edu
|
[161] |
Zhang,Z.K., Zhou,T., Zhang,Y.C. , 2011. Tag-aware recommender systems: a state-of-the-art survey. J. Comput. Sci. Technol., 26:767–777. http://dx.doi.org/10.1007/s11390-011-0176-1
|
[162] |
Zhao,P., Yu,B., 2006. On model selection consistency of Lasso. J. Mach. Learn. Res., 7:2541–2563.
|
[163] |
Zhao,P., Yu,B., 2007. Stagewise Lasso. J. Mach. Learn. Res., 8:2701–2726.
|
[164] |
Zhao,P., Rocha, G., Yu,B. , 2009. The composite absolute penalties family for grouped and hierarchical variable selection. Ann. Stat., 37(6a):3468–3497. http://dx.doi.org/10.1214/07-Aos584
|
[165] |
Zhu,Y.T., Zhao,Y.B., Liu,J.,
|
/
〈 | 〉 |