Flight control for air-breathing hypersonic vehicles using linear quadratic regulator design based on stochastic robustness analysis

Lin CAO, Shuo TANG, Dong ZHANG

PDF(1582 KB)
PDF(1582 KB)
Front. Inform. Technol. Electron. Eng ›› 2017, Vol. 18 ›› Issue (7) : 882-897. DOI: 10.1631/FITEE.1601363
Article
Article

Flight control for air-breathing hypersonic vehicles using linear quadratic regulator design based on stochastic robustness analysis

Author information +
History +

Abstract

The flight dynamics model of air-breathing hypersonic vehicles (AHVs) is highly nonlinear and multivariable cou-pling, and includes inertial uncertainties and external disturbances that require strong, robust, and high-accuracy controllers. In this paper, we propose a linear-quadratic regulator (LQR) design method based on stochastic robustness analysis for the longitudinal dynamics of AHVs. First, input/output feedback linearization is used to design LQRs. Second, subject to various system parameter uncertainties, system robustness is characterized by the probability of stability and desired performance. Then, the mapping rela-tionship between system robustness and LQR parameters is established. Particularly, to maximize system robustness, a novel hybrid particle swarm optimization algorithm is proposed to search for the optimal LQR parameters. During the search iteration, a Chernoff bound algorithm is applied to determine the finite sample size of Monte Carlo evaluation with the given probability levels. Finally, simulation results show that the optimization algorithm can effectively find the optimal solution to the LQR parameters.

Keywords

Air-breathing hypersonic vehicles (AHVs) / Stochastic robustness analysis / Linear-quadratic regulator (LQR) / Par-ticle swarm optimization (PSO) / Improved hybrid PSO algorithm

Cite this article

Download citation ▾
Lin CAO, Shuo TANG, Dong ZHANG. Flight control for air-breathing hypersonic vehicles using linear quadratic regulator design based on stochastic robustness analysis. Front. Inform. Technol. Electron. Eng, 2017, 18(7): 882‒897 https://doi.org/10.1631/FITEE.1601363

References

[1]
Arun Kishore,W.C., Sen, S., Ray,G. , , 2008. Dynamic control allocation for tracking time-varying control de-mand. J. Guid. Contr. Dynam., 31(4):1150–1157. https://doi.org/10.2514/1.34085
[2]
Bolender,M.A., Doman,D.B., 2005. A non-linear model for the longitudinal dynamics of a hypersonic air-breathing vehicle. AIAA Guidance, Navigation, and Control Conf. and Exhibit, p.2005–6255. https://doi.org/10.2514/6.2005-6255
[3]
Bolender,M., Oppenheimer, M., Doman,D. , 2007. Effects of uncertainty and viscous aerodynamics on dynamics of a flexible air-breathing hypersonic vehicle. AIAA Atmos-pheric Flight Mechanics Conf. and Exhibit, p.2007–6397. https://doi.org/10.2514/6.2007-6397
[4]
Chernoff,H., 1952. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Stat., 23:493–507.https://doi.org/10.1214/aoms/1177729330
[5]
Dickeson,J.J., Rodriguez, A.A., Sirdharan,S. , , 2009. Decentralized control of an air-breathing scramjet- powered hypersonic vehicle. AIAA Guidance, Naviga-tion and Control Conf., p.2009–6281. https://doi.org/10.2514/6.2009-6281
[6]
Fernández,B.R., Hedrick, J.K., 1987. Control of multivariable nonlinear systems by the sliding mode method. Int. J. Contr., 46(3):1019–1040. https://doi.org/10.1080/00207178708547410
[7]
Fidan,B., Mirmirani, M., Ioannou,P.A. , 2003. Flight dynam-ics and control of air-breathing hypersonic vehicles: re-views and new directions. AIAA Int. Space Planes and Hypersonic Systems and Technologies, p.2003–7081. https://doi.org/10.2514/6.2003-7081
[8]
Ge,D.M., Huang,X.L., Gao,H.J., 2011. Multi-loop gain- scheduling control of flexible air-breathing hypersonic vehicle. Int. J. Innov. Comput. Inform. Contr., 7(10): 5865–5880.
[9]
Goldberg,D.E., 1989. Genetic Algorithms in Search, Opti-mization and Machine Leaning. Addison-Wesley Pub-lishing Company Inc., Reading.
[10]
Grove,K.P., Sigthorsson, D.O., Serrani,A. , , 2005. Ref-erence command tracking for a linearized model of an air-breathing hypersonic vehicle. AIAA Guidance, Nav-igation, and Control Conf. and Exhibit, p.2005–6144. https://doi.org/10.2514/6.2005-6144
[11]
Kennedy,J., Eberhart, R.C., 1995. Particle swarm optimiza-tion. Proc. IEEE Int. Conf. on Neural Networks, p.1942–1948. https://doi.org/10.1109/ICNN.1995.488968
[12]
Kuipers,M.K., Ioannou, P., Fidan,B. , , 2008. Robust adaptive multiple model controller design for an air-breathing hypersonic vehicle model. AIAA Guidance, Navigation and Control Conf. and Exhibit, p.2008–7142. https://doi.org/10.2514/6.2008-7142
[13]
Malik,R.F., Rahman, T.A., Hashim,S.Z.M. , , 2007. New particle swarm optimizer with Sigmoid increasing inertia weight. Int. J. Comput. Sci. Secur., 1(2):35–44.
[14]
Marrison,C.I., Stengel, R.F., 1997. Robust control system design using random search and genetic algorithms. IEEE Trans. Autom. Contr., 42(6):835–839. https://doi.org/10.1109/9.587338
[15]
Marrison,C.I., Stengel, R.F., 1998. Design of robust control systems for a hypersonic aircraft. J. Guid. Contr. Dynam., 21(1):58–63. https://doi.org/10.2514/2.4197
[16]
Parker,J.T., Serrani, A.S., Yurkovich,M.A. , , 2007. Control-oriented modeling of an air-breathing hypersonic vehicle. J. Guid. Contr. Dynam., 30(3):856–869. https://doi.org/10.2514/1.27830
[17]
Piccoli,B., Zadarnowska, K., Gaeta,M. , 2009. Stochastic algorithms for robustness of control performances. Au-tomatica, 45(6):1407–1414. https://doi.org/10.1016/j.automatica.2009.02.018
[18]
Preller,D., Smart,M.K., 2015. Longitudinal control strategy for hypersonic accelerating vehicles. J. Spacecr. Rock., 52(3):993–999. https://doi.org/10.2514/1.A32934
[19]
Pu,Z.P., Tan,X.M., Fan,G.L., , 2014. Uncertainty analysis and robust trajectory linearization control of a flexible air-breathing hypersonic vehicle. Acta Astronaut., 101:16–32. https://doi.org/10.1016/j.actaastro.2014.01.025
[20]
Ratnaweera,A., Halgamuge, S.K., Watson,H.C. , 2004. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput., 8(3):240–255. https://doi.org/10.1109/TEVC.2004.826071
[21]
Ray,L.R., Stengel, R.F., 1990. Stochastic performance ro-bustness of aircraft control system. AIAA Paper, p.1990–3410.https://doi.org/10.2514/6.1990-3410
[22]
Rehman,O.U., Petersen, I.R., Fidan,B. , 2013. Feedback linearization-based robust nonlinear control design for hypersonic flight vehicles. J. Syst. Contr. Eng., 227(1): 3–11. https://doi.org/10.1177/0959651812447722
[23]
Rodriguez,A.A., Dickeson, J.J., Cifdaloz,O. , , 2008. Modeling and control of scramjet-powered hypersonic vehicles: challenges, trends, & tradeoffs. AIAA Guidance, Navigation and Control Conf. and Exhibit, p.2008–6793. https://doi.org/10.2514/6.2008-6793
[24]
Stengel,R.F., Ryan,L.E., 1989. Multivariable histograms for analysis of linear control system robustness. American Control Conf., p.937–945. https://doi.org/10.1109/ACC.1989.4173342
[25]
Stengel,R.F., Ryan,L.E., 1991. Stochastic robustness of linear time-invariant control systems. IEEE Trans. Autom. Contr., 36(1):82–87. https://doi.org/10.1109/9.62270
[26]
Wang,Q., Stengel, R.F., 2000. Robust nonlinear control of a hypersonic aircraft. J. Guid. Contr. Dynam., 23(4): 577–585.https://doi.org/10.2514/2.4580
[27]
Wang,Q., Stengel, R.F., 2001. Searching for robust minimal- order compensators. J. Dynam. Syst. Meas. Contr., 123(2): 233–236. http://doi.org/10.1115/1.1367270
[28]
Wang,Q., Stengel, R.F., 2002. Robust control of nonlinear systems with parametric uncertainty. Automatica, 38(9): 1591–1599. https://doi.org/10.1016/S0005-1098(02)00046-8
[29]
Williams,T., Bolender, M., Doman,D. , , 2006. An aer-othermal flexible mode analysis of a hypersonic vehicle. AIAA Paper, p.2006–6647. https://doi.org/10.2514/6.2006-6647
[30]
Xu,B., Shi,Z.K., 2015. An overview on flight dynamics and control approaches for hypersonic vehicles. Sci. China Inform. Sci., 58(7):070201. https://doi.org/10.1007/s11432-014-5273-7
[31]
Xu,B., Zhang,Y., 2015. Neural discrete back-stepping control of hypersonic flight vehicle with equivalent prediction model. Neurocomputing, 154:337–346. http://doi.org/10.1016/j.neucom.2014.11.059
[32]
Xu,B., Fan,Y.H., Zhang,S.M., 2015a. Minimal-learning- parameter technique based adaptive neural control of hypersonic flight dynamics without back-stepping. Neu-rocomputing, 164:201–209. https://doi.org/10.1016/j.neucom.2015.02.069
[33]
Xu,B., Yang,C.G., Pan,Y.P., 2015b. Global neural dynamic surface tracking control of strict-feedback systems with application to hypersonic flight vehicle. IEEE Trans. Neur. Netw. Learn. Syst., 26(10):2563–2575. https://doi.org/10.1109/TNNLS.2015.2456972
[34]
Xu,B., Guo,Y.Y., Yuan,Y., , 2016. Fault-tolerant con-trol using command-filtered adaptive back-stepping technique: application to hypersonic longitudinal flight dynamics. Int. J. Adapt. Contr. Signal Process., 30(4): 553–577. https://doi.org/10.1002/acs.2596
[35]
Xu,H.J., Mirmirani, M.D., Ioannou,P.A. , 2004. Adaptive sliding mode control design for a hypersonic flight vehi-cle. J. Guid. Contr. Dynam., 27(5):829–838. https://doi.org/10.2514/1.12596
[36]
Zong,Q., Wang,J., Tian,B.L., , 2013. Quasi-continuous higher-order sliding mode controller and observer design for flexible hypersonic vehicle. Aerosp. Sci. Technol., 27(1):127–137. https://doi.org/10.1016/j.ast.2012.07.004

RIGHTS & PERMISSIONS

2017 Zhejiang University and Springer-Verlag Berlin Heidelberg
PDF(1582 KB)

Accesses

Citations

Detail

Sections
Recommended

/