Moving target defense: state of the art and characteristics
Gui-lin CAI, Bao-sheng WANG, Wei HU, Tian-zuo WANG
Moving target defense: state of the art and characteristics
Moving target defense (MTD) has emerged as one of the game-changing themes to alter the asymmetric situation between attacks and defenses in cyber-security. Numerous related works involving several facets of MTD have been published. However, comprehensive analyses and research on MTD are still absent. In this paper, we present a survey on MTD technologies to scientifically and systematically introduce, categorize, and summarize the existing research works in this field. First, a new security model is introduced to describe the changes in the traditional defense paradigm and security model caused by the introduction of MTD. A function-and-movement model is provided to give a panoramic overview on different perspectives for understanding the existing MTD research works. Then a systematic interpretation of published literature is presented to describe the state of the art of the three main areas in the MTD field, namely, MTD theory, MTD strategy, and MTD evaluation. Specifically, in the area of MTD strategy, the common characteristics shared by the MTD strategies to improve system security and effectiveness are identified and extrapolated. Thereafter, the methods to implement these characteristics are concluded. Moreover, the MTD strategies are classified into three types according to their specific goals, and the necessary and sufficient conditions of each type to create effective MTD strategies are then summarized, which are typically one or more of the aforementioned characteristics. Finally, we provide a number of observations for the future direction in this field, which can be helpful for subsequent researchers.
Moving target defense / Security model / Function-and-movement model / Characteristics
[1] |
Albanese, M., de Benedictis, A., Jajodia, S.,
|
[2] |
Al-Shaer, E., 2011. Toward network configuration randomization for moving target defense. In: Jajodia, S., Ghosh, A.K., Swarup, V.,
|
[3] |
Al-Shaer, E., Duan, Q., Jafarian, J.H., 2013. Random host mutation for moving target defense. In: Keromytis, A.D., di Pietro, R. (Eds.), Security and Privacy in Communication Networks. Springer Berlin Heidelberg, Germany, p.310–327. http://dx.doi.org/10.1007/978-3-642-36883-7_19
|
[4] |
Andel, T.R., Whitehurst, L.N., McDonald, J.T., 2014. Software security and randomization through program partitioning and circuit variation. Proc. 1st ACM Workshop on Moving Target Defense, p.79–86. http://dx.doi.org/10.1145/2663474.2663484
|
[5] |
Azab, M., Hassan, R., Eltoweissy, M., 2011. ChameleonSoft: a moving target defense system. Proc. 7th Int. Conf. on Collaborative Computing: Networking, Applications and Worksharing, p.241–250.
|
[6] |
Bangalore, A.K., Sood, A.K., 2009. Securing web servers using self cleansing intrusion tolerance (SCIT). Proc. 2nd Int. Conf. on Dependability, p.60–65. http://dx.doi.org/10.1109/DEPEND.2009.15
|
[7] |
Beraud, P., Cruz, A., Hassell, S.,
|
[8] |
Beraud, P., Cruz, A., Hassell, S.,
|
[9] |
Bilar, D., Cybenko, G., Murphy, J., 2013. Adversarial dynamics: the conficker case study. In: Jajodia, S., Ghosh, A.K., Subrahmanian, V.S.,
|
[10] |
Cai, G.L., Wang, B.S., Luo, Y.B.,
|
[11] |
Carroll, T.E., Crouse, M., Fulp, E.W.,
|
[12] |
Carter, K.M., Riordan, J.F., Okhravi, H., 2014. A game theoretic approach to strategy determination for dynamic platform defenses. Proc. 1st ACM Workshop on Moving Target Defense, p.21–30. http://dx.doi.org/10.1145/2663474.2663478
|
[13] |
Carvalho, M., Ford, R., 2014. Moving-target defenses for computer networks. IEEE Sec. Priv., 12(2):73–76. http://dx.doi.org/10.1109/MSP.2014.30
|
[14] |
Carvalho, M., Bradshaw, J.M., Bunch, L.,
|
[15] |
Carvalho, M., Eskridge, T.C., Bunch, L.,
|
[16] |
Casola, V., de Benedictis, A., Albanese, M., 2014. A multi-layer moving target defense approach for protecting resource-constrained distributed devices. In: Bouabana-Tebibel, T., Rubin, S.H. (Eds.), Integration of Reusable Systems. Springer International Publishing, Switzerland, p.299–324. http://dx.doi.org/10.1007/978-3-319-04717-1_14
|
[17] |
Chavez, A.R., Stout, W.M.S., Peisert, S., 2015. Techniques for the dynamic randomization of network attributes. Proc. Int. Carnahan Conf. on Security Technology, p.1–6. http://dx.doi.org/10.1109/CCST.2015.7389661
|
[18] |
Christodorescu, M., Fredrikson, M., Jha, S.,
|
[19] |
Clark, A., Sun, K., Poovendran, R., 2013. Effectiveness of IP address randomization in decoy-based moving target defense. Proc. 52nd IEEE Conf. on Decision and Control, p.678–685. http://dx.doi.org/10.1109/CDC.2013.6759960
|
[20] |
Colbaugh, R., Glass, K., 2012. Predictability-oriented defense against adaptive adversaries. Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics, p.2721–2727. http://dx.doi.org/10.1109/ICSMC.2012.6378159
|
[21] |
Corbett, C., Uher, J., Cook, J.,
|
[22] |
Crosby, S., Carvalho, M., Kidwell, D., 2013. A layered approach to understanding network dependencies on moving target defense mechanisms. Proc. 8th Annual Cyber Security and Information Intelligence Research Workshop, Article 36. http://dx.doi.org/10.1145/2459976.2460017
|
[23] |
Crouse, M., Prosser, B., Fulp, E.W., 2015. Probabilistic performance analysis of moving target and deception reconnaissance defenses. Proc. 2nd ACM Workshop on Moving Target Defense, p.21-29. http://dx.doi.org/10.1145/2808475.2808480
|
[24] |
Cui, A., Stolfo, S.J., 2011. Symbiotes and defensive mutualism: moving target defense. In: Jajodia, S., Ghosh, A.K., Swarup, V.,
|
[25] |
Debroy, S., Calyam, P., Nguyen, M.,
|
[26] |
Dunlop, M., Groat, S., Urbanski, W.,
|
[27] |
Eskridge, T.C., Carvalho, M.M., Stoner, E.,
|
[28] |
Evans, D., Nguyen-Tuong, A., Knight, J., 2011. Effectiveness of moving target defenses. In: Jajodia, S., Ghosh, A.K., Swarup, V.,
|
[29] |
Gonzalez, C., 2013. From individual decisions from experience to behavioral game theory: lessons for cybersecurity. In: Jajodia, S., Ghosh, A.K., Subrahmanian, V.S.,
|
[30] |
Green, M., MacFarland, D.C., Smestad, D.R.,
|
[31] |
Han, Y.J., Lu, W.L., Xu, S.H., 2014. Characterizing the power of moving target defense via cyber epidemic dynamics. Proc. Symp. and Bootcamp on the Science of Security, Article 10. http://dx.doi.org/10.1145/2600176.2600180
|
[32] |
Hobson, T., Okhravi, H., Bigelow, D.,
|
[33] |
Hong, J.B., Kim, D.S., 2016. Assessing the effectiveness of moving target defenses using security models. IEEE Trans. Depend. Secur. Comput., 13(2):163–177. http://dx.doi.org/10.1109/TDSC.2015.2443790
|
[34] |
Huang, Y., Ghosh, A.K., 2011. Introducing diversity and uncertainty to create moving attack surfaces for web services. In: Jajodia, S., Ghosh, A.K., Swarup, V.,
|
[35] |
Jackson, T., Salamat, B., Homescu, A.,
|
[36] |
Jackson, T., Homescu, A., Crane, S.,
|
[37] |
Jafarian, J.H., Al-Shaer, E., Duan, Q., 2012. OpenFlow random host mutation: transparent moving target defense using software defined networking. Proc. 1st Workshop on Hot Topics in Software Defined Networks, p.127–132. http://dx.doi.org/10.1145/2342441.2342467
|
[38] |
Jafarian, J.H., Al-Shaer, E., Duan, Q., 2014. Spatio-temporal address mutation for proactive cyber agility against sophisticated attackers. Proc. 1st ACM Workshop on Moving Target Defense, p.69–78. http://dx.doi.org/10.1145/2663474.2663483
|
[39] |
Jain, M., An, B., Tambe, M., 2013. Security games applied to real-world: research contributions and challenges. In: Jajodia, S., Ghosh, A.K., Subrahmanian, V.S.,
|
[40] |
Jajodia, S., Ghosh, A.K., Swarup, V.,
|
[41] |
Jajodia, S., Ghosh, A.K., Subrahmanian, V.S.,
|
[42] |
Jangda, A., Mishra, M., de Sutter, B., 2015. Adaptive justin-time code diversification. Proc. 2nd ACM Workshop on Moving Target Defense, p.49–53. http://dx.doi.org/10.1145/2808475.2808487
|
[43] |
Jia, Q., Sun, K., Stavrou, A., 2013. MOTAG: moving target defense against Internet denial of service attacks. Proc. 22nd Int. Conf. on Computer Communication and Networks, p.1–9. http://dx.doi.org/10.1109/ICCCN.2013.6614155
|
[44] |
John, D.J., Smith, R.W., Turkett, W.H.,
|
[45] |
Kampanakis, P., Perros, H., Beyene, T., 2014. SDN-based solutions for moving target defense network protection. Proc. 15th Int. Symp. on a World of Wireless, Mobile and Multimedia Networks, p.1–6. http://dx.doi.org/10.1109/WoWMoM.2014.6918979
|
[46] |
le Goues, C., Nguyen-Tuong, A., Chen, H.,
|
[47] |
Liu, C.M., Zhang, Y., Chen, R., 2011. Research on dynamic model for network security based on artificial immunity. Int. J. Knowl. Lang. Process., 2(3):21–35.
|
[48] |
Liu, Y.J., Peng, W., Su, J.S., 2014. A study of IP prefix hijacking in cloud computing networks. Secur. Commun. Netw., 7(11):2201–2210. http://dx.doi.org/10.1002/sec.738
|
[49] |
Lu, Z., Marvel, L., Wang, C., 2015. To be proactive or not: a framework to model cyber maneuvers for critical path protection in MANETs. Proc. 2nd ACM Workshop on Moving Target Defense, p.85–93. http://dx.doi.org/10.1145/2808475.2808479
|
[50] |
Lucas, B., Fulp, E.W., John, D.J.,
|
[51] |
Luo, Y.B., Wang, B.S., Cai, G.L., 2014. Effectiveness of port hopping as a moving target defense. Proc. 7th Int. Conf. on Security Technology, p.7–10. http://dx.doi.org/10.1109/SecTech.2014.9
|
[52] |
Luo, Y.B., Wang, B.S., Wang, X.F.,
|
[53] |
MacFarland, D.C., Shue, C.A., 2015. The SDN shuffle: creating a moving-target defense using host-based softwaredefined networking. Proc. 2nd ACM Workshop on Moving Target Defense, p.37–41. http://dx.doi.org/10.1145/2808475.2808485
|
[54] |
Manadhata, P.K., 2013. Game theoretic approaches to attack surface shifting. In: Jajodia, S., Ghosh, A.K., Subrahmanian, V.S.,
|
[55] |
Manadhata, P.K., Wing, J.M., 2011a. An attack surface metric. IEEE Trans. Softw. Eng., 37(3):371–386. http://dx.doi.org/10.1109/TSE.2010.60
|
[56] |
Manadhata, P.K., Wing, J.M., 2011b. A formal model for a system’s attack surface. In: Jajodia, S., Ghosh, A.K., Swarup, V.,
|
[57] |
Moody, W.C., Hu, H., Apon, A., 2014. Defensive maneuver cyber platform modeling with stochastic Petri nets. Proc. Int. Conf. on Collaborative Computing: Networking, Applications and Worksharing, p.531–538.
|
[58] |
Murphy, M., Larsen, P., Brunthaler, S.,
|
[59] |
NITRD, 2009. National Cyber Leap Year Summit 2009 Co-chairs’ Report. Available from https://www.nitrd. gov/nitrdgroups/index.php?title=Category:National_Cyber_Leap_Year_Summit_2009 [<Date>Accessed on Jan. 1</Date>, 2014].
|
[60] |
NITRD, 2010. Cybersecurity Game-Change Research & Development Recommendations. Available from http:// www.nitrd.gov/pubs/CSIA_IWG_%20Cybersecurity_%20GameChange_RD_%20Recommendations_201005 13.pdf [<Date>Accessed on Aug. 20</Date>, 2013].
|
[61] |
Oehmen, C., Peterson, E., Teuton, J., 2013. Evolutionary drift models for moving target defense. Proc. 8th Annual Cyber Security and Information Intelligence Research Workshop, Article 37. http://dx.doi.org/10.1145/2459976.2460018
|
[62] |
Okhravi, H., Comella, A., Robinson, E.,
|
[63] |
Okhravi, H., Haines, J.W., Ingols, K., 2011b. Achieving cyber survivability in a contested environment using a cyber moving target. High Front. J., 7(3):9–13.
|
[64] |
Okhravi, H., Comella, A., Robinson, E.,
|
[65] |
Okhravi, H., Rabe, M.A., Mayberry, T.J.,
|
[66] |
Okhravi, H., Hobson, T., Bigelow, D.,
|
[67] |
Okhravi, H., Riordan, J., Carter, K., 2014b. Quantitative evaluation of dynamic platform techniques as a defensive mechanism. In: Stavrou, A., Bos, H., Portokalidis, G. (Eds.), Research in Attacks, Intrusions and Defenses. Springer International Publishing, Switzerland, p.405–425. http://dx.doi.org/10.1007/978-3-319-11379-1_20
|
[68] |
Pappas, V., Polychronakis, M., Keromytis, A.D., 2013. Practical software diversification using in-place code randomization. In: Jajodia, S., Ghosh, A.K., Subrahmanian, V.S.,
|
[69] |
Peng, W., Li, F., Huang, C.T.,
|
[70] |
Prakash, A., Wellman, M.P., 2015. Empirical game-theoretic analysis for moving target defense. Proc. 2nd ACM Workshop on Moving Target Defense, p.57–65. http://dx.doi.org/10.1145/2808475.2808483
|
[71] |
Rahman, M.A., Al-Shaer, E., Bobba, R.B., 2014. Moving target defense for hardening the security of the power system state estimation. Proc. 1st ACM Workshop on Moving Target Defense, p.59–68. http://dx.doi.org/10.1145/2663474.2663482
|
[72] |
Rinard, M., 2011. Manipulating program functionality to eliminate security vulnerabilities. In: Jajodia, S., Ghosh, A.K., Swarup, V.,
|
[73] |
Roeder, T., Schneider, F.B., 2010. Proactive obfuscation. ACM Trans. Comput. Syst., 28(2):Article 4. http://dx.doi.org/10.1145/1813654.1813655
|
[74] |
Sandoval, J.E., Hassell, S.P., 2010. Measurement, identification and calculation of cyber defense metrics. Proc. Military Communications Conf., p.2174–2179. http://dx.doi.org/10.1109/MILCOM.2010.5680489
|
[75] |
Taguinod, M., Doupe, A., Zhao, Z.,
|
[76] |
Thompson, M., Evans, N., Kisekka, V., 2014. Multiple OS rotational environment an implemented moving target defense. Proc. 7th Int. Symp. on Resilient Control Systems, p.1–6. http://dx.doi.org/10.1109/ISRCS.2014.6900086
|
[77] |
Torrieri, D., Zhu, S.C., Jajodia, S., 2013. Cyber maneuver against external adversaries and compromised nodes. In: Jajodia, S., Ghosh, A.K., Subrahmanian, V.S.,
|
[78] |
van Leeuwen, B., Stout, W.M.S., Urias, V., 2015. Operational cost of deploying Moving Target Defenses defensive work factors. Proc. Military Communications Conf., p.966–971. http://dx.doi.org/10.1109/MILCOM.2015.7357570
|
[79] |
Vikram, S., Yang, C., Gu, G., 2013. NOMAD: towards nonintrusive moving-target defense against web bots. Proc. IEEE Conf. on Communications and Network Security, p.55–63. http://dx.doi.org/10.1109/CNS.2013.6682692
|
[80] |
Wang, T.Z., Wang, H.M., Liu, B.,
|
[81] |
Xu, J., Guo, P.Y., Zhao, M.Y.,
|
[82] |
Yackoski, J., Xie, P., Bullen, H.,
|
[83] |
Yackoski, J., Bullen, H., Yu, X.,
|
[84] |
Yackoski, J., Li, J., DeLoach, S.A.,
|
[85] |
Zaffarano, K., Taylor, J., Hamilton, S., 2015. A quantitative framework for moving target defense effectiveness evaluation. Proc. 2nd ACM Workshop on Moving Target Defense, p.3–10. http://dx.doi.org/10.1145/2808475.2808476
|
[86] |
Zhang, J., Hu, H.P., Liu, B., 2011. Robustness of RED in mitigating LDoS attack. KSII Trans. Internet Inform. Syst., 5(5):1085–1100. http://dx.doi.org/10.3837/tiis.2011.05.012
|
[87] |
Zhang, M., Wang, L., Jajodia, S.,
|
[88] |
Zhu, M.H., Hu, Z.S., Liu, P., 2014. Reinforcement learning algorithms for adaptive cyber defense against Heartbleed. Proc. 1st ACM Workshop on Moving Target Defense, p.51–58. http://dx.doi.org/10.1145/2663474.2663481
|
[89] |
Zhu, Q.Y., Ba şar, T., 2013. Game-theoretic approach to feedback-driven multi-stage moving target defense. Proc. 4th Int. Conf. on Decision and Game Theory for Security, p.246–263. http://dx.doi.org/10.1007/978-3-319-02786-9_15
|
[90] |
Zhuang, R., Zhang, S., DeLoach, S.A.,
|
[91] |
Zhuang, R., Zhang, S., Bardas, A.,
|
[92] |
Zhuang, R., DeLoach, S.A., Ou, X.M., 2014a. A model for analyzing the effect of moving target defenses on enterprise networks. Proc. 9th Annual Cyber and Information Security Research Conf., p.73–76. http://dx.doi.org/10.1145/2602087.2602088
|
[93] |
Zhuang, R., DeLoach, S.A, Ou, X.M., 2014b. Towards a theory of moving target defense. Proc. 1st ACM Workshop on Moving Target Defense, p.31–40. http://dx.doi.org/10.1145/2663474.2663479
|
[94] |
Zhuang, R., Bardas, A.G., DeLoach, S.A.,
|
/
〈 | 〉 |