Information schema constructs for instantiation and composition of system manifestation features

Shahab POURTALEBI, Imre HORVÁTH

PDF(2702 KB)
PDF(2702 KB)
Front. Inform. Technol. Electron. Eng ›› 2017, Vol. 18 ›› Issue (9) : 1396-1415. DOI: 10.1631/FITEE.1601235
Article
Article

Information schema constructs for instantiation and composition of system manifestation features

Author information +
History +

Abstract

Complementing our previous publications, this paper presentsthe information schema constructs (ISCs) that underpin the programmingof specific system manifestation feature (SMF) orientated informationmanagement and composing system models. First, we briefly present(1) the general process of pre-embodiment design with SMFs, (2) theprocedures of creating genotypes and phenotypes of SMFs, (3) the specificprocedure of instantiation of phenotypes of SMFs, and (4) the procedureof system model management and processing. Then, the chunks of informationneeded for instantiation of phenotypes of SMFs are discussed, andthe ISCs designed for instantiation presented. Afterwards, the informationmanagement aspects of system modeling are addressed. Methodologically,system modeling involves (1) placement of phenotypes of SMF in themodeling space, (2) combining them towards the desired architectureand operation, (3) assigning values to the parameters and checkingthe satisfaction of constraints, and (4) storing the system modelin the SMFs-based warehouse database. The final objective of the reportedresearch is to develop an SMFs-based toolbox to support modeling ofcyber-physical systems (CPSs).

Keywords

System manifestation features (SMFs) / Information schema constructs / Databaseschemata / SMF genotypes / SMF phenotypes / SMF instances / Software tool box / System-level design / Cyber-physical systems

Cite this article

Download citation ▾
Shahab POURTALEBI, Imre HORVÁTH. Information schema constructs for instantiationand composition of system manifestation features. Front. Inform. Technol. Electron. Eng, 2017, 18(9): 1396‒1415 https://doi.org/10.1631/FITEE.1601235

References

[1]
Bhave , A., Krogh , B., Garlan , D., , 2010. Multi-domainmodeling of cyber-physical systems using architectural views. Proc. Analytic Virtual Integration of Cyber-PhysicalSystems Workshop.
[2]
Broman , D., Lee , E.A., Tripakis , S., , 2012. Viewpoints, formalisms, languages, and tools for cyber-physical systems. Proc. ACM 6th Int. Workshop on Multi-paradigm Modeling, p.49–54. https://doi.org/10.1145/2508443.2508452
[3]
Derler , P., Lee , E.A., Vincentelli , A.S., 2012. Modelingcyber–physical systems. Proc. IEEE, 100(1):13–28. https://doi.org/10.1109/JPROC.2011.2160929
[4]
Edwards , J.R., Bagozzi , R.P., 2000. On the nature and direction of relationshipsbetween constructs and measures. Psychol. Methods, 5(2):155–174. https://doi.org/10.1037/1082-989X.5.2.155
[5]
Erbas , C., Pimentel , A.D., Thompson , M., , 2007. A framework for system-level modeling and simulation of embeddedsystems architectures. EURASIP J. Embed. Syst., 2007(1):082123. https://doi.org/10.1155/2007/82123
[6]
Frevert , R., Haase , J., Jancke , R., , 2005. System levelmodeling.In: Modeling and Simulation forRF System Design. Springer, Boston, MA, p.25–38. https://doi.org/10.1007/0-387-27585-1_4
[7]
Gavrilescu , M., Magureanu , G., Pescaru , D., , 2010. Accurate modeling of physical time in asynchronous embedded sensingnetworks. Proc. IEEE 8th Int. Symp. OnIntelligent Systems and Informatics, p.477–482. https://doi.org/10.1109/SISY.2010.5647308
[8]
Hadorn , B., Courant , M., Hirsbrunner , B., 2015. Holisticsystem modelling for cyber physical systems. Proc. 6th Int. Multi-conf. on Complexity, Informatics and Cybernetics.
[9]
Horváth , I., Pourtalebi , S., 2015. Fundamentals of a Mereo-Operandi theory to support transdisciplinarymodeling and co-design of cyber-physical systems. Proc. ASME Int. Design Engineering Technical Conf., p.1–12. https://doi.org/10.1115/DETC2015-46702
[10]
Lee , E.A., 2015. The past, present and future of cyber-physicalsystems: a focus on models. Sensors, 15:4837–4869. https://doi.org/10.3390/s150304837
[11]
Lee , G., Sacks , R., Eastman , C., 2007. Productdata modeling using GTPPM: a case study. Autom. Constr., 16(3):392–407. https://doi.org/10.1016/j.autcon.2006.05.004
[12]
Macal , M.C., North , J.M., 2006. Tutorial on agent-based modeling and simulation. Part 2: how to model with agents. Proc. 38th WinterSimulation Conf., p.73–83.
[13]
Munir , S., Ahmed , M., Stankovic , J., 2015. EyePhy:detecting dependencies in cyber-physical system Apps due to human-in-the-loop. Proc. 12th EAI Int. Conf. on Mobile and UbiquitousSystems: Computing, Networking and Services, p.170–179. https://doi.org/10.4108/eai.22-7-2015.2260045
[14]
Petnga , L., Austin , M., 2016. An ontological framework for knowledge modeling and decisionsupport in cyberphysical systems. Adv. Eng. Inform., 30(1):77–94. https://doi.org/10.1016/j.aei.2015.12.003
[15]
Pourtalebi , S., Horváth , I., 2016a. Towards a methodology of system manifestation features-basedpre-embodiment design. J. Eng. Des., 27(16):232–268. https://doi.org/10.1080/09544828.2016.1141183
[16]
Pourtalebi , S., Horváth , I., 2016b. Procedures for creating system manifestation features:an information processing perspective. Proc.Int. Symp. on Tools and Methods of Competitive Engineering, p.1–16.
[17]
Pourtalebi , S., Horváth , I., 2016c. Information schema constructs for defining warehousedatabases of genotypes and phenotypes of system manifestation features. Front. Inform. Technol.Electron. Eng., 17(9):861–884. https://doi.org/10.1631/FITEE.1600997
[18]
Richter , G., 1981. Utilization of data access and manipulationin conceptual schema definitions. Inform. Syst., 6(1):53–71. https://doi.org/10.1016/0306-4379(81)90018-1
[19]
Seiger , R., Keller , C., Niebling , F., , 2014. Modelling complex and flexible processes for smart cyber-physicalenvironments. J.Comput. Sci., 10:137–148. https://doi.org/10.1016/j.jocs.2014.07.001
[20]
Simko , G., Levendovszky , T., Maroti , M., , 2014. Towards a theory for cyber-physical systems modeling. Proc. 4th ACM SIGBED Int. Workshop on Design, Modeling, and Evaluationof Cyber-Physical Systems, p.56–61. https://doi.org/10.1145/2593458.2593463
[21]
Zhou , K.L., Liu , B.B., Ye , C., , 2013. Design support tools of cyber-physical systems.In: Leung, V., Chen, M. (Eds.), CloudComputing. Springer, Cham, p.258–267. https://doi.org/10.1007/978-3-319-05506-0_25

RIGHTS & PERMISSIONS

2017 Zhejiang University and Springer-Verlag GmbHGermany
PDF(2702 KB)

Accesses

Citations

Detail

Sections
Recommended

/