Modeling of a dynamic dual-input dual-output fast steeringmirror system

Hong SONG, Jia-heng ZHANG, Ping YANG, Hao-cai HUANG, Shu-yue ZHAN, Teng-jun LIU, Yi-lu GUO, Hang-zhou WANG, Hui HUANG, Quan-quan MU, Mei-fen FANG, Ming-yuan YANG

PDF(1207 KB)
PDF(1207 KB)
Front. Inform. Technol. Electron. Eng ›› 2017, Vol. 18 ›› Issue (10) : 1488-1498. DOI: 10.1631/FITEE.1601221
Article

Modeling of a dynamic dual-input dual-output fast steeringmirror system

Author information +
History +

Abstract

A modeling method is proposed for a dynamic fast steering mirror (FSM) system with dual inputs and dual outputs. A physical model of the FSM system is derived based on first principles, describing the dynamics and coupling between the inputs and outputs of the FSM system. The physical model is then represented in a state-space form. Unknown parameters in the state-space model are identified by the subspace identification algorithm, based on the measured input-output data of the FSM system. The accuracy of the state-space model is evaluated by comparing the model estimates with measurements. The variance-accounted-for value of the state-space model is better than 97%, not only for the modeling data but also for the validation data set, indicating high accuracy of the model. Comparison is also made between the proposed dynamic model and the conventional static model, where improvement in model accuracy is clearly observed. The model identified by the proposed method can be used for optimal controller design for closed-loop FSM systems. The modeling method is also applicable to FSM systems with similar structures.

Keywords

Fast steering mirror / Dynamic system / Input-output coupling, Physical modeling / Subspace identification

Cite this article

Download citation ▾
Hong SONG, Jia-heng ZHANG, Ping YANG, Hao-cai HUANG, Shu-yue ZHAN, Teng-jun LIU, Yi-lu GUO, Hang-zhou WANG, Hui HUANG, Quan-quan MU, Mei-fen FANG, Ming-yuan YANG. Modeling of a dynamic dual-input dual-output fast steeringmirror system. Front. Inform. Technol. Electron. Eng, 2017, 18(10): 1488‒1498 https://doi.org/10.1631/FITEE.1601221

References

[1]
Alvi , B.A., Asif , M., Siddiqui , F.A., , 2014. Fast steering mirror control using embedded self-learning fuzzy controller for free space optical communication. Wirel. Pers. Commun. , 76(3):643–656. https://doi.org/10.1007/s11277-014-1731-1
[2]
Arancibia , N.O.P., Chen , N., Gibson , S., , 2006. Adaptive control of a MEMS steering mirror for suppression of laser beam jitter. Proc. American Control Conf., Article 104206. https://doi.org/10.1109/ACC.2005.1470530
[3]
Cao , Z.L., Mu , Q.Q., Hu , L.F., , 2009. Preliminary use of nematic liquid crystal adaptive optics with a 2.16-meter reflecting telescope. Opt. Expr. , 17(4):2530–2537. https://doi.org/10.1364/OE.17.002530
[4]
Cao , Z.L., Mu , Q.Q., Hu , L.F., , 2012. Optimal energy-splitting method for an open-loop liquid crystal adaptive optics system. Opt. Expr. , 20(17):19331–19342. https://doi.org/10.1364/OE.20.019331
[5]
Chiuso , A., Muradore , R., Marchetti , E., 2010. Dynamic calibration of adaptive optics systems: a system identification approach. IEEE Trans. Contr. Syst. Technol. , 18(3):705–713. https://doi.org/10.1109/TCST.2009.2023914
[6]
Hei , M., Zhang , L.C., Zhou , Q.K., , 2015. Model-based design method of two-axis four-actuator fast steering mirror system. J. Centr. South Univ. , 22(1):150–158. https://doi.org/10.1007/s11771-015-2505-y
[7]
Hinnen , K., Verhaegen , M., Doelman , N., 2008. A datadriven H2-optimal control approach for adaptive optics. IEEE Trans. Contr. Syst. Technol. , 16(3):381–395. https://doi.org/10.1109/TCST.2007.903374
[8]
Jansson , M., Wahlberg , B., 1996. A linear regression approach to state-space subspace system identification. Signal Process. , 52(2):103–129. https://doi.org/10.1016/0165-1684(96)00048-5
[9]
Lu , Y.F., Fan , D.P., Zhang , Z.Y., 2013. Theoretical and experimental determination of bandwidth for a twoaxis fast steering mirror. Opt. Int. J. Light Electron Opt. , 124(16):2443–2449. https://doi.org/10.1016/j.ijleo.2012.08.023
[10]
Mu , Q.Q., Cao , Z.L., Li , C., , 2008. Accommodationbased liquid crystal adaptive optics system for large ocular aberration correction. Opt. Lett. , 33(24):2898–2900. https://doi.org/10.1364/OL.33.002898
[11]
Portillo , A.A., Ortiz , G.G., Racho , C., 2001. Fine pointing control for optical communications. Proc. IEEE Aerospace Conf., 1541–1550. https://doi.org/10.1109/AERO.2001.931385
[12]
Raj , A.A.B., Selvi , J.A.V., Kumar , D., , 2015. Design of cognitive decision making controller for autonomous online adaptive beam steering in free space optical communication system. Wirel. Pers. Commun. , 84(1):765–799. https://doi.org/10.1007/s11277-015-2660-3
[13]
Song , H., Fraanje , R., Schitter , G., , 2011. Controller design for a high-sampling-rate closed-loop adaptive optics system with Piezo-driven deformable mirror. Eur. J. Contr. , 17(3):290–301. https://doi.org/10.3166/ejc.17.290-301
[14]
Tang , T., Ma , J.G., Ge , R., 2011. PID-I controller of charge coupled device-based tracking loop for fast-steering mirror. Opt. Eng. , 50(4):043002. https://doi.org/10.1117/1.3567059
[15]
Verhaegen , M., Verdult , V., 2007. Filtering and System Identification: a Least Squares Approach. Cambridge University Press, Cambridge.
[16]
Verhaegen , M., Verdult , V., Bergboer , N., 2007. Filtering and System Identification: an Introduction to Using Matlab Software. Delft University of Technology, the Netherlands.
[17]
Wang , G., Rao , C.H., 2015. Adaptive control of piezoelectric fast steering mirror for high precision tracking application. Smart Mater. Struct. , 24(3):035019. https://doi.org/10.1088/0964-1726/24/3/035019
[18]
Yu , Z.L., Cui , N., Chen , X.L., , 2015. H control for fast steering mirror based on the incremental PI controller. Proc. Conf. of the Photoelectronic Technology Committee of the Chinese Society of Astronautics, Article 95210G. https://doi.org/10.1117/12.2087306

RIGHTS & PERMISSIONS

2017 Zhejiang University and Springer-Verlag GmbH Germany
PDF(1207 KB)

Accesses

Citations

Detail

Sections
Recommended

/