Filtering and tracking with trinion-valued adaptive algorithms

Xiao-ming GOU, Zhi-wen LIU, Wei LIU, You-gen XU

PDF(505 KB)
PDF(505 KB)
Front. Inform. Technol. Electron. Eng ›› 2016, Vol. 17 ›› Issue (8) : 834-840. DOI: 10.1631/FITEE.1601164
Article
Article

Filtering and tracking with trinion-valued adaptive algorithms

Author information +
History +

Abstract

A new model for three-dimensional processes based on the trinion algebra is introduced for the first time. Compared to the pure quaternion model, the trinion model is more compact and computationally more efficient, while having similar or comparable performance in terms of adaptive linear filtering. Moreover, the trinion model can effectively represent the general relationship of state evolution in Kalman filtering, where the pure quaternion model fails. Simulations on real-world wind recordings and synthetic data sets are provided to demonstrate the potential of this new modeling method.

Keywords

Three-dimensional processes / Trinion / Least mean squares / Kalman filter

Cite this article

Download citation ▾
Xiao-ming GOU, Zhi-wen LIU, Wei LIU, You-gen XU. Filtering and tracking with trinion-valued adaptive algorithms. Front. Inform. Technol. Electron. Eng, 2016, 17(8): 834‒840 https://doi.org/10.1631/FITEE.1601164

References

[1]
Adali, T., Schreier, P.J., 2014. Optimization and estimation of complex-valued signals: theory and applications in filtering and blind source separation. IEEE Signal Process. Mag., 31(5):112–128. http://dx.doi.org/10.1109/MSP.2013.2287951
[2]
Allenby, R.B., 1991. Rings, Fields and Groups: Introduction to Abstract Algebra (Modular Mathematics Series). Elsevier Limited .
[3]
Assefa, D., Mansinha, L., Tiampo, K.F., , 2011. The trinion Fourier transform of color images. Signal Process., 91(8):1887–1900. http://dx.doi.org/10.1016/j.sigpro.2011.02.011
[4]
Barthélemy, Q., Larue, A., Mars, J.I., 2014. About QLMS derivations. IEEE Signal Process. Lett., 21(2):240–243. http://dx.doi.org/10.1109/LSP.2014.2299066
[5]
Brandwood, D.H., 1983. A complex gradient operator and its application in adaptive array theory. IEE Proc. H, 130(1):11–16.
[6]
Chui, C.K., Chen, G.R., 1991. Kalman Filtering. Springer-Verlag, Berlin.
[7]
Ell, T.A., Le Bihan, N., Sangwine, S.J., 2014. Quaternion Fourier Transforms for Signal and Image Processing. Wiley.
[8]
Gou, X., Liu, Z., Liu, W., , 2015. Three-dimensional wind profile prediction with trinion-valued adaptive algorithms. Proc. IEEE Int. Conf. on Digital Signal Processing, p.566–569. http://dx.doi.org/10.1109/ICDSP.2015.7251937
[9]
Hawes, M., Liu, W., 2015. Design of fixed beamformers based on vector-sensor arrays. Int. J. Antenn. Propag., 2015:181937.1–181937.9. http://dx.doi.org/10.1155/2015/181937
[10]
Haykin, S., Widrow, B., 2003. Least-Mean-Square Adaptive Filters. John Wiley & Sons, New York. .
[11]
Isaeva, O.M., Sarytchev, V.A., 1995.Quaternion presentations polarization state. Proc. 2nd IEEE Topical Symp. on Combined Optical-Microwave Earth and Atmosphere Sensing, p.195–196. http://dx.doi.org/10.1109/COMEAS.1995.472367
[12]
Jahanchahi, C., Mandic, D.P., 2014. A class of quaternion Kalman filters. IEEE Trans. Neur. Netw. Learn. Syst., 25(3):533–544. http://dx.doi.org/10.1109/TNNLS.2013.2277540
[13]
Jiang, M.D., Liu, W., Li, Y., 2014. A general quaternionvalued gradient operator and its applications to computational fluid dynamics and adaptive beamforming. Proc. 19th Int. Conf. on Digital Signal Processing, p.821–826. http://dx.doi.org/10.1109/ICDSP.2014.6900781
[14]
Jiang, M.D., Li, Y., Liu, W., 2016a. Properties of a general quaternion-valued gradient operator and its applications to signal processing. Front. Inform. Technol. Electron. Eng., 17(2):83–95. http://dx.doi.org/10.1631/FITEE.1500334
[15]
Jiang, M.D., Liu, W., Li, Y., 2016b. Adaptive beamforming for vector-sensor arrays based on a reweighted zeroattracting quaternion-valued LMS algorithm. IEEE Trans. Circ. Syst. II, 63(3):274–278. http://dx.doi.org/10.1109/TCSII.2015.2482464
[16]
Kantor, I.L., Solodovnikov, A.S., 1989. Hypercomplex Numbers: an Elementary Introduction to Algebras. Springer-Verlag, New York.
[17]
Le Bihan, N., Mars, J., 2004. Singular value decomposition of quaternion matrices: a new tool for vector-sensor signal processing. Signal Process., 84(7):1177–1199. http://dx.doi.org/10.1016/j.sigpro.2004.04.001
[18]
Le Bihan, N., Miron, S., Mars, J.I., 2007. MUSIC algorithm for vector-sensors array using biquaternions. IEEE Trans. Signal Process., 55(9):4523–4533. http://dx.doi.org/10.1109/TSP.2007.896067
[19]
Li, T.C., Villarrubia, G., Sun, S.D., , 2015. Resampling methods for particle filtering: identical distribution, a new method, and comparable study. Front. Inform. Technol. Electron. Eng., 16(11):969–984. http://dx.doi.org/10.1631/FITEE.1500199
[20]
Liu, H., Zhou, Y.L., Gu, Z.P., 2014. Inertial measurement unit-camera calibration based on incomplete inertial sensor information. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 15(11):999–1008. http://dx.doi.org/10.1631/jzus.C1400038
[21]
Liu, W., 2014. Antenna array signal processing for quaternion-valued wireless communication system. Proc. IEEE Benjamin Franklin Symp. on Microwave and Antenna Sub-systems, p.1–3.
[22]
Miron, S., Le Bihan, N., Mars, J.I., 2006. Quaternion-MUSIC for vector-sensor array processing. IEEE Trans. Signal Process., 54(4):1218–1229. http://dx.doi.org/10.1109/TSP.2006.870630
[23]
Parfieniuk, M., Petrovsky, A., 2010. Inherently lossless structures for eight- and six-channel linear-phase paraunitary filter banks based on quaternion multipliers. Signal Process., 90(6):1755–1767. http://dx.doi.org/10.1016/j.sigpro.2010.01.008
[24]
Pei, S.C., Cheng, C.M., 1999. Color image processing by using binary quaternion-moment-preserving thresholding technique. IEEE Trans. Image Process., 8(5):614–628. http://dx.doi.org/10.1109/83.760310
[25]
Pei, S.C., Chang, J.H., Ding, J.J., 2004. Commutative reduced biquaternions and their Fourier transform for signal and image processing applications. IEEE Trans. Signal Process., 52(7):2012–2031. http://dx.doi.org/10.1109/TSP.2004.828901
[26]
Sangwine, S.J., Ell, T.A., Blackledge, J.M., , 2000. The discrete Fourier transform of a colour image. Proc. Image Processing II: Mathematical Methods, Algorithms and Applications, p.430–441.
[27]
Talebi, S.P., Mandic, D.P., 2015. A quaternion frequency estimator for three-phase power systems. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.3956–3960. http://dx.doi.org/10.1109/ICASSP.2015.7178713
[28]
Tao, J.W., 2013. Performance analysis for interference and noise canceller based on hypercomplex and spatiotemporal-polarisation processes. IET Radar Sonar Navig., 7(3):277–286. http://dx.doi.org/10.1049/iet-rsn.2012.0151
[29]
Tao, J.W., Chang, W.X., 2014. Adaptive beamforming based on complex quaternion processes. Math. Prob. Eng., 2014:291249.1–291249.10. http://dx.doi.org/10.1155/2014/291249
[30]
Ward, J.P., 1997. Quaternions and Cayley Numbers: Algebra and Applications. Springer, the Netherlands. http://dx.doi.org/10.1007/978-94-011-5768-1
[31]
Zetterberg, L., Brandstrom, H., 1977. Codes for combined phase and amplitude modulated signals in a fourdimensional space. IEEE Trans. Commun., 25(9):943–950. http://dx.doi.org/10.1109/TCOM.1977.1093927
[32]
Zhang, X.R., Liu, W., Xu, Y.G., , 2014. Quaternionvalued robust adaptive beamformer for electromagnetic vector-sensor arrays with worst-case constraint. Signal Process., 104:274–283. http://dx.doi.org/10.1016/j.sigpro.2014.04.00<?Pub Caret?>6

RIGHTS & PERMISSIONS

2016 Zhejiang University and Springer-Verlag Berlin Heidelberg
PDF(505 KB)

Accesses

Citations

Detail

Sections
Recommended

/