Filtering and tracking with trinion-valued adaptive algorithms
Xiao-ming GOU, Zhi-wen LIU, Wei LIU, You-gen XU
Filtering and tracking with trinion-valued adaptive algorithms
A new model for three-dimensional processes based on the trinion algebra is introduced for the first time. Compared to the pure quaternion model, the trinion model is more compact and computationally more efficient, while having similar or comparable performance in terms of adaptive linear filtering. Moreover, the trinion model can effectively represent the general relationship of state evolution in Kalman filtering, where the pure quaternion model fails. Simulations on real-world wind recordings and synthetic data sets are provided to demonstrate the potential of this new modeling method.
Three-dimensional processes / Trinion / Least mean squares / Kalman filter
[1] |
Adali, T., Schreier, P.J., 2014. Optimization and estimation of complex-valued signals: theory and applications in filtering and blind source separation. IEEE Signal Process. Mag., 31(5):112–128. http://dx.doi.org/10.1109/MSP.2013.2287951
|
[2] |
Allenby, R.B., 1991. Rings, Fields and Groups: Introduction to Abstract Algebra (Modular Mathematics Series). Elsevier Limited .
|
[3] |
Assefa, D., Mansinha, L., Tiampo, K.F.,
|
[4] |
Barthélemy, Q., Larue, A., Mars, J.I., 2014. About QLMS derivations. IEEE Signal Process. Lett., 21(2):240–243. http://dx.doi.org/10.1109/LSP.2014.2299066
|
[5] |
Brandwood, D.H., 1983. A complex gradient operator and its application in adaptive array theory. IEE Proc. H, 130(1):11–16.
|
[6] |
Chui, C.K., Chen, G.R., 1991. Kalman Filtering. Springer-Verlag, Berlin.
|
[7] |
Ell, T.A., Le Bihan, N., Sangwine, S.J., 2014. Quaternion Fourier Transforms for Signal and Image Processing. Wiley.
|
[8] |
Gou, X., Liu, Z., Liu, W.,
|
[9] |
Hawes, M., Liu, W., 2015. Design of fixed beamformers based on vector-sensor arrays. Int. J. Antenn. Propag., 2015:181937.1–181937.9. http://dx.doi.org/10.1155/2015/181937
|
[10] |
Haykin, S., Widrow, B., 2003. Least-Mean-Square Adaptive Filters. John Wiley & Sons, New York. .
|
[11] |
Isaeva, O.M., Sarytchev, V.A., 1995.Quaternion presentations polarization state. Proc. 2nd IEEE Topical Symp. on Combined Optical-Microwave Earth and Atmosphere Sensing, p.195–196. http://dx.doi.org/10.1109/COMEAS.1995.472367
|
[12] |
Jahanchahi, C., Mandic, D.P., 2014. A class of quaternion Kalman filters. IEEE Trans. Neur. Netw. Learn. Syst., 25(3):533–544. http://dx.doi.org/10.1109/TNNLS.2013.2277540
|
[13] |
Jiang, M.D., Liu, W., Li, Y., 2014. A general quaternionvalued gradient operator and its applications to computational fluid dynamics and adaptive beamforming. Proc. 19th Int. Conf. on Digital Signal Processing, p.821–826. http://dx.doi.org/10.1109/ICDSP.2014.6900781
|
[14] |
Jiang, M.D., Li, Y., Liu, W., 2016a. Properties of a general quaternion-valued gradient operator and its applications to signal processing. Front. Inform. Technol. Electron. Eng., 17(2):83–95. http://dx.doi.org/10.1631/FITEE.1500334
|
[15] |
Jiang, M.D., Liu, W., Li, Y., 2016b. Adaptive beamforming for vector-sensor arrays based on a reweighted zeroattracting quaternion-valued LMS algorithm. IEEE Trans. Circ. Syst. II, 63(3):274–278. http://dx.doi.org/10.1109/TCSII.2015.2482464
|
[16] |
Kantor, I.L., Solodovnikov, A.S., 1989. Hypercomplex Numbers: an Elementary Introduction to Algebras. Springer-Verlag, New York.
|
[17] |
Le Bihan, N., Mars, J., 2004. Singular value decomposition of quaternion matrices: a new tool for vector-sensor signal processing. Signal Process., 84(7):1177–1199. http://dx.doi.org/10.1016/j.sigpro.2004.04.001
|
[18] |
Le Bihan, N., Miron, S., Mars, J.I., 2007. MUSIC algorithm for vector-sensors array using biquaternions. IEEE Trans. Signal Process., 55(9):4523–4533. http://dx.doi.org/10.1109/TSP.2007.896067
|
[19] |
Li, T.C., Villarrubia, G., Sun, S.D.,
|
[20] |
Liu, H., Zhou, Y.L., Gu, Z.P., 2014. Inertial measurement unit-camera calibration based on incomplete inertial sensor information. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 15(11):999–1008. http://dx.doi.org/10.1631/jzus.C1400038
|
[21] |
Liu, W., 2014. Antenna array signal processing for quaternion-valued wireless communication system. Proc. IEEE Benjamin Franklin Symp. on Microwave and Antenna Sub-systems, p.1–3.
|
[22] |
Miron, S., Le Bihan, N., Mars, J.I., 2006. Quaternion-MUSIC for vector-sensor array processing. IEEE Trans. Signal Process., 54(4):1218–1229. http://dx.doi.org/10.1109/TSP.2006.870630
|
[23] |
Parfieniuk, M., Petrovsky, A., 2010. Inherently lossless structures for eight- and six-channel linear-phase paraunitary filter banks based on quaternion multipliers. Signal Process., 90(6):1755–1767. http://dx.doi.org/10.1016/j.sigpro.2010.01.008
|
[24] |
Pei, S.C., Cheng, C.M., 1999. Color image processing by using binary quaternion-moment-preserving thresholding technique. IEEE Trans. Image Process., 8(5):614–628. http://dx.doi.org/10.1109/83.760310
|
[25] |
Pei, S.C., Chang, J.H., Ding, J.J., 2004. Commutative reduced biquaternions and their Fourier transform for signal and image processing applications. IEEE Trans. Signal Process., 52(7):2012–2031. http://dx.doi.org/10.1109/TSP.2004.828901
|
[26] |
Sangwine, S.J., Ell, T.A., Blackledge, J.M.,
|
[27] |
Talebi, S.P., Mandic, D.P., 2015. A quaternion frequency estimator for three-phase power systems. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.3956–3960. http://dx.doi.org/10.1109/ICASSP.2015.7178713
|
[28] |
Tao, J.W., 2013. Performance analysis for interference and noise canceller based on hypercomplex and spatiotemporal-polarisation processes. IET Radar Sonar Navig., 7(3):277–286. http://dx.doi.org/10.1049/iet-rsn.2012.0151
|
[29] |
Tao, J.W., Chang, W.X., 2014. Adaptive beamforming based on complex quaternion processes. Math. Prob. Eng., 2014:291249.1–291249.10. http://dx.doi.org/10.1155/2014/291249
|
[30] |
Ward, J.P., 1997. Quaternions and Cayley Numbers: Algebra and Applications. Springer, the Netherlands. http://dx.doi.org/10.1007/978-94-011-5768-1
|
[31] |
Zetterberg, L., Brandstrom, H., 1977. Codes for combined phase and amplitude modulated signals in a fourdimensional space. IEEE Trans. Commun., 25(9):943–950. http://dx.doi.org/10.1109/TCOM.1977.1093927
|
[32] |
Zhang, X.R., Liu, W., Xu, Y.G.,
|
/
〈 | 〉 |