
Reversible binary subtractor design using quantum dot-cellular automata
Jadav Chandra DAS, Debashis DE
Front. Inform. Technol. Electron. Eng ›› 2017, Vol. 18 ›› Issue (9) : 1416-1429.
Reversible binary subtractor design using quantum dot-cellular automata
In the field of nanotechnology, quantum dot-cellular automata(QCA) is the promising archetype that can provide an alternative solutionto conventional complementary metal oxide semiconductor (CMOS) circuit.QCA has high device density, high operating speed, and extremely lowpower consumption. Reversible logic has widespread applications inQCA. Researchers have explored several designs of QCA-based reversiblelogic circuits, but still not much work has been reported on QCA-basedreversible binary subtractors. The low power dissipation and highcircuit density of QCA pledge the energy-efficient design of logiccircuit at a nano-scale level. However, the necessity of too manylogic gates and detrimental garbage outputs may limit the functionalityof a QCA-based logic circuit. In this paper we describethe design and implementation of a DG gate in QCA. The universal natureof the DG gate has been established. The QCA building block of theDG gate is used to achieve new reversible binary subtractors. Theproposed reversible subtractors have low quantum cost and garbageoutputs compared to the existing reversible subtractors. The proposedcircuits are designed and simulated using QCA Designer-2.0.3.
Quantum dot-cellular automata (QCA) / Reversible logic / DG gate / Binary subtractor / Quantum cost
[1] |
Abdullah-Al-Shafi , M., 2016. Synthesis of Peresand R logic circuits in nanoscopic scale. Commun. Appl. Electron., 4(1):20–25. https://doi.org/10.5120/cae2016652004
|
[2] |
Akter , R., Islam , N., Waheed , S., 2015. Implementation ofreversible logic gate in quantum dot cellular automata. Int. J. Comput. Appl., 109(1):41–44. https://doi.org/10.5120/19155-0591
|
[3] |
Arjmand , M.M., Soryani , M., Navi , K., 2013. Coplanarwire crossing in quantum cellular automata using a ternary cell. IET Circ. Dev. Syst., 7(5):263–272. https://doi.org/10.1049/iet-cds.2012.0366
|
[4] |
Bahar , A.N., Waheed , S., Hossain , N., 2015. A newapproach of presenting reversible logic gate in nanoscale. Springer-Plus, 4:153. https://doi.org/10.1186/s40064-015-0928-4
|
[5] |
Das , J.C., De , D., 2012. Quantum dot-cellular automata based cipher text designfor nano-communication. Proc. Int. Conf.on Radar, Communication and Computing, p.224–229. https://doi.org/10.1109/ICRCC.2012.6450583
|
[6] |
Das , J.C., De , D., 2015. Reversible binary to grey and grey to binary code converterusing QCA. IETEJ. Res., 61(3): 223–229. https://doi.org/10.1080/03772063.2015.1018845
|
[7] |
Das , J.C., De , D., 2016a. Quantum-dot cellular automata based reversible low powerparity generator and parity checker design for nanocommunication. Front. Inform. Technol.Electron. Eng., 17(3):224–236. https://doi.org/10.1631/FITEE.1500079
|
[8] |
Das , J.C., De , D., 2016b. User authentication based on quantum-dot cellular automatausing reversible logic for secure nanocommunication. Arab. J. Sci. Eng., 41(3):773–784. https://doi.org/10.1007/s13369-015-1870-z
|
[9] |
Das , J.C., De , D., 2016c. Optimized design of reversible gates in quantum dot-cellularautomata: a review. Rev. Theor. Sci., 4(3):279–286. https://doi.org/10.1166/rits.2016.1062
|
[10] |
Das , J.C., De , D., 2016d. Novel low power reversible encoder design using quantum-dotcellular automata. J. Nanoelectron. Optoelectron., 11(4):450–458. https://doi.org/10.1166/jno.2016.1932
|
[11] |
Das , J.C., De , D., 2016e. Novel low power reversible binary incrementer designusing quantum-dot cellular automata. Microproc. Microsyst., 42:10–23. https://doi.org/10.1016/j.micpro.2015.12.004
|
[12] |
Das , J.C., De , D., 2016f. Reversible comparator design using quantum dot-cellularautomata. IETE J. Res., 62(3):323–330. https://doi.org/10.1080/03772063.2015.1088407
|
[13] |
Das , J.C., Debnath , B., De , D., 2015. Imagesteganography using quantum dot-cellular automata. Quant. Matter, 4(5):504–517. https://doi.org/10.1166/qm.2015.1225
|
[14] |
Das , K., De , D., 2010a. Novel approach to design a testable conservative logicgate for QCA implementation. IEEE 2nd Int.Advance Computing Conf., p.82–87. https://doi.org/10.1109/IADCC.2010.5423034
|
[15] |
Das , K., De , D., 2010b. Characterization, test and logic synthesis of novel conservativeand reversible logic gates for QCA. Int. J. Nanosci., 9(3):201–214. https://doi.org/10.1142/S0219581X10006594
|
[16] |
Das , K., De , D., 2011. Characterisation, applicability and defect analysis fortiles nanostructure of quantum dot cellular automata. Mol. Simul., 37(3):210–225. https://doi.org/10.1080/08927022.2010.536543
|
[17] |
Das , K., De , D., De , M., 2013. Realisation of semiconductorternary quantum dot cellular automata. IET Micro Nano Lett., 8(5):258–263. https://doi.org/10.1049/mnl.2012.0618
|
[18] |
Debnath , B, Das , J.C., De , D., 2017. Reversiblelogic-based image steganography using quantum dot cellular automatafor secure nanocommunication. IET Circ. Dev. Syst., 11(1):58–67. https://doi.org/10.1049/iet-cds.2015.0245
|
[19] |
Dehghan , B., Roozbeh , A., Zare , J., 2014. Designof low power comparator using DG gate. Circ. Syst., 5(1):7–12. https://doi.org/10.4236/cs.2014.51002
|
[20] |
Dey , A., Das , K., De , D.,
|
[21] |
Farazkish , R., Khodaparast , F., 2015. Design and characterization of a new fault-tolerant full-adderfor quantum-dot cellular automata. Microprocess. Microsyst., 39(6):426–433. https://doi.org/10.1016/j.micpro.2015.04.004
|
[22] |
Ghosh , B., Agarwal , A., Akram , M.W., 2014a. An efficientquantum-dot cellular automata multi-bit adder design using 5-inputmajority gate. Quant.Matter, 3(5):448–453. https://doi.org/10.1166/qm.2014.1145
|
[23] |
Ghosh , B., Giridhar , M., Nagaraju , M.,
|
[24] |
Gladshtein , M., 2013. Design and simulation of novel adder/subtractorson quantum-dot cellular automata: radical departure from Boolean logiccircuits. Microelectron.J., 44(6):545–552. https://doi.org/10.1016/j.mejo.2013.03.013
|
[25] |
Hashemi , S., Navi , K., 2014. Reversible multiplexer design in quantum-dot cellularautomata. Quant.Matter, 3(6):523–528. https://doi.org/10.1166/qm.2014.1158
|
[26] |
Hayati , M., Rezaei , A., 2014. New approaches for modeling and simulation of quantum-dotcellular automata. J. Comput. Electron., 13(2):537–546. https://doi.org/10.1007/s10825-014-0565-0
|
[27] |
Hennessy , K., Lent , C.S., 2001. Clocking of molecular quantum-dot cellular automata. J. Vac. Sci. Technol. B, 19(5):1752–1755. https://doi.org/10.1116/1.1394729
|
[28] |
Hung , W.N.N., Song , X.Y., Yang , G.W.,
|
[29] |
ITRS, 2005. International Technology Roadmap for Semiconductors.http://www.itrs.net
|
[30] |
Janez , M., Pecar , P., Mraz , M., 2012. Layout design of manufacturablequantum-dot cellular automata. Microelectron. J., 43(7):501–513. https://doi.org/10.1016/j.mejo.2012.03.007
|
[31] |
Karim , F., Walus , K., 2014. Calculating the steady-state polarizations of quantumcellular automata (QCA) circuits. J. Comput. Electron., 13(3):569–584. https://doi.org/10.1007/s10825-014-0573-0
|
[32] |
Kianpour , M., Sabbaghi-Nadooshan , R., 2014. A conventional design and simulation for CLB implementationof an FPGA quantum-dot cellular automata. Microprocess. Microsyst., 38(8):1046–1062. https://doi.org/10.1016/j.micpro.2014.08.001
|
[33] |
Lakshmi , S.K., Rajakumar , G., Saminathan , A.G., 2015. Designand analysis of sequential circuits using nanotechnology based quantumdot cellular automata. J. Nanoelectron. Optoelectron., 10(5):601–610. https://doi.org/10.1166/jno.2015.1813
|
[34] |
Landauer , R., 1961. Irreversibility and heat generationin the computing process. IBM J. Res. Dev., 5(3):183–191. https://doi.org/10.1147/rd.53.0183
|
[35] |
Lent , C.S., Tougaw , P.D., 1997. A device architecture for computing with quantum dots. Proc. IEEE, 85(4):541–557. https://doi.org/10.1109/5.573740
|
[36] |
Lent , C.S., Tougaw , P.D., Porod , W.,
|
[37] |
Ma , X.J., Huang , J., Metra , C.,
|
[38] |
Mano , M.M., Ciletti , M.D., 2011. Digital Design: with an Introduction to theVerilog HDL. Prentice Hall, India.
|
[39] |
Orlov , A.O., Amlani , I., Bernstein , G.H.,
|
[40] |
Ottavi , M., Pontarelli , S., DeBenedictis , E.P.,
|
[41] |
Pradhan , N., De , D., 2013. Spin transfer torque driven magnetic QCA cells.In: Giri, P., Goswami, D., Perumal, A. (Eds.), Advanced Nanomaterials and Nanotechnology.Springer Berlin Heidelberg, p.561–569. https://doi.org/10.1007/978-3-642-34216-5_56
|
[42] |
Saravanan , P., Kalpana , P., 2013. A novel and systematic approach to implement reversiblegates in quantum dot cellular automata. WSEAS Trans. Circ. Syst., 12(10):307–316.
|
[43] |
Sen , B., Dutta , M., Sikdar , B.K., 2014. Efficientdesign of parity preserving logic in quantum-dot cellular automatatargeting enhanced scalability in testing. Microelectron. J., 45(2):239–248. https://doi.org/10.1016/j.mejo.2013.11.008
|
[44] |
Shah , N.A., Khanday , F.A., Iqbal , J., 2012. Quantum-dotcellular automata (QCA) design of multi-function reversible logicgate. Commun. Inform.Sci. Manag. Eng., 2(4):8–18.
|
[45] |
Smolin , J.A., DiVincenzo , D.P., 1996. Five two-bit quantum gates are sufficientto implement the quantum Fredkin gate. Phys. Rev. A, 53(4):2855–2856. https://doi.org/10.1103/PhysRevA.53.2855
|
[46] |
Thapliyal , H., Ranganathan , N., 2009a. Conservative QCA gate (CQCA) for designing concurrentlytestable molecular QCA circuits. Proc.22nd Int. Conf. on VLSI Design, p.511–516. https://doi.org/10.1109/VLSI.Design.2009.75
|
[47] |
Thapliyal , H., Ranganathan , N., 2009b. Design of efficient reversible binary subtractors basedon a new reversible gate. IEEE ComputerSociety Annual Symp. on VLSI, p.229–234. https://doi.org/10.1109/ISVLSI.2009.49
|
[48] |
Thapliyal , H., Ranganathan , N., 2010. Reversible logic-based concurrently testable latchesfor molecular QCA. IEEE Trans. Nanotechnol., 9(1):62–69. https://doi.org/10.1109/TNANO.2009.2025038
|
[49] |
Thapliya l, H., Srinivas , M.B., Arabnia , H., 2005. Reversiblelogic synthesis of half, full and parallel subtractors. Proc. Int. Conf. on Embedded Systems and Applications, p.165–181.
|
[50] |
Thapliyal , H., Ranganathan , N., Kotiyal , S., 2013. Designof testable reversible sequential circuits. IEEE Trans. VLSI Syst., 21(7):1201–1209. https://doi.org/10.1109/TVLSI.2012.2209688
|
[51] |
Vankamamidi , V., Ottavi , M., Lombardi , F., 2005. A linebasedparallel memory for QCA implementation. IEEE Trans. Nanotechnol., 4(6):690–698. https://doi.org/10.1109/TNANO.2005.858589
|
[52] |
Yang , X.K., Cai , L., Kang , Q.,
|
[53] |
Zhang , R.M., Walus , K., Wang , W.,
|
/
〈 |
|
〉 |