Finding map regions with high density of query keywords
Zhi YU, Can WANG, Jia-jun BU, Xia HU, Zhe WANG, Jia-he JIN
Finding map regions with high density of query keywords
We consider the problem of finding map regions that best match query keywords. This region search problem can be applied in many practical scenarios such as shopping recommendation, searching for tourist attractions, and collision region detection for wireless sensor networks. While conventional map search retrieves isolate locations in a map, users frequently attempt to find regions of interest instead, e.g., detecting regions having too many wireless sensors to avoid collision, or finding shopping areas featuring various merchandise or tourist attractions of different styles. Finding regions of interest in a map is a non-trivial problem and retrieving regions of arbitrary shapes poses particular challenges. In this paper, we present a novel region search algorithm, dense region search (DRS), and its extensions, to find regions of interest by estimating the density of locations containing the query keywords in the region. Experiments on both synthetic and real-world datasets demonstrate the effectiveness of our algorithm.
Map search / Region search / Region recommendation / Spatial keyword search / Geographic information system / Location-based service
[1] |
Aggarwal, A., Imai, H., Katoh, N.,
|
[2] |
Agrawal, R., Gehrke, J., Gunopulos, D.,
|
[3] |
Ankerst, M., Breunig, M.M., Kriegel, H.P.,
|
[4] |
Aurenhammer, F., 1991. Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput. Surv., 23(3):345–405. https://doi.org/10.1145/116873.116880
|
[5] |
Chen, L.S., Cong, G., Jensen, C.S.,
|
[6] |
Chen, Y.Y., Suel, T., Markowetz, A., 2006. Efficient query processing in geographic web search engines. Proc. ACM SIGMOD Int. Conf. on Management of Data, p.277–288. https://doi.org/10.1145/1142473.1142505
|
[7] |
Cheng, C.H., Fu, A.W., Zhang, Y., 1999. Entropy-based subspace clustering for mining numerical data. Proc. 5th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.84–93. https://doi.org/10.1145/312129.312199
|
[8] |
Christoforaki, M., He, J., Dimopoulos, C.,
|
[9] |
Cong, G., Jensen, C.S., Wu, D.M., 2009. Efficient retrieval of the top-k most relevant spatial web objects. Proc. VLDB Endowm., 2(1):337–348. https://doi.org/10.14778/1687627.1687666
|
[10] |
Ester, M., Kriegel, H.P., Sander, J.,
|
[11] |
Fan, J., Li, G.L., Zhou, L.Z.,
|
[12] |
Feige, U., Seltser, M., 1997. On the densest k-subgraph problem. Technical Report, the Weizmann Institute, Rehovot.
|
[13] |
Feige, U., Kortsarz, G., Peleg, D., 2001. The dense ksubgraph problem. Algorithmica, 29:410–421. https://doi.org/10.1007/s004530010050
|
[14] |
Guo, D.S., Peuquet, D.J., Gahegan, M., 2003. ICEAGE: interactive clustering and exploration of large and highdimensional geodata. GeoInformatica, 7(3):229–253. https://doi.org/10.1023/A:1025101015202
|
[15] |
Hinneburg, A., Keim, D.A., 1999. Optimal grid-clustering: towards breaking the curse of dimensionality in highdimensional clustering. Proc. 25th Int. Conf. on Very Large Data Bases, p.506–517.
|
[16] |
Jones, C.B., Purves, R., Ruas, A.,
|
[17] |
Joshi, T., Joy, J., Kellner, T.,
|
[18] |
Khodaei, A., Shahabi, C., Li, C., 2010. Hybrid indexing and seamless ranking of spatial and textual features of web documents. LNCS, 6261:450–466. https://doi.org/10.1007/978-3-642-15364-8_37
|
[19] |
Komusiewicz, C., Sorge, M., 2012. Finding dense subgraphs of sparse graphs. Proc. 7th Int. Conf. on Parameterized and Exact Computation, p.242–251. https://doi.org/10.1007/978-3-642-33293-7_23
|
[20] |
Lee, D.T., 1982. On k-nearest neighbor Voronoi diagrams in the plane. IEEE Trans. Comput., 100(6):478–487. https://doi.org/10.1109/tc.1982.1676031
|
[21] |
Leung, K.W.T., Lee, D.L., Lee, W.C., 2011. CLR: a collaborative location recommendation framework based on co-clustering. Proc. 34th Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, p.305–314. https://doi.org/10.1145/2009916.2009960
|
[22] |
Li, Z.S., Lee, K.C., Zheng, B.H.,
|
[23] |
Mai, H.T., Kim, J., Roh, Y.J.,
|
[24] |
Ortega, E., Otera, I., Mancebo, S., 2014. TITIM GIS-tool: a GIS-based decision support system for measuring the territorial impact of transport infrastructures. Exp. Syst. Appl., 41(16):7641–7652. https://doi.org/10.1016/j.eswa.2014.05.028
|
[25] |
Saoussen, K., Sami, F., Takwa, T.,
|
[26] |
Schikuta, E., 1996. Grid-clustering: an efficient hierarchical clustering method for very large data sets. Proc. 13th Int. Conf. on Pattern Recognition, p.101–105. https://doi.org/10.1109/icpr.1996.546732
|
[27] |
Shamos, M.I., Hoey, D., 1975. Closest-point problems. 16th Annual Symp. on Foundations of Computer Science, p.151–162. https://doi.org/10.1109/sfcs.1975.8
|
[28] |
Son, L.H., 2014. Optimizing municipal solid waste collection using chaotic particle swarm optimization in GIS based environments: a case study at Danang city, Vietnam. Exp. Syst. Appl., 41(18):8062–8074. https://doi.org/10.1016/j.eswa.2014.07.020
|
[29] |
Thomee, B., Rae, A., 2013. Uncovering locally characterizing regions within geotagged data. Proc. 22nd Int. Conf. on World Wide Web, p.1285–1296. https://doi.org/10.1145/2488388.2488500
|
[30] |
Vaid, S., Jones, C.B., Joho, H.,
|
[31] |
Wei, L.Y., Zheng, Y., Peng, W.C., 2012. Constructing popular routes from uncertain trajectories. Proc. 18th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.195–203. https://doi.org/10.1145/2339530.2339562
|
[32] |
Wu, D.M., Yiu, M.L., Cong, G.,
|
[33] |
Yuan, J., Zheng, Y., Xie, X., 2012. Discovering regions of different functions in a city using human mobility and POIs. Proc. 18th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.186–194. https://doi.org/10.1145/2339530.2339561
|
[34] |
Zhang, F.Z., Wilkie, D., Zheng, Y.,
|
[35] |
Zhang, Q., Kang, J.H., Gong, Y.Y.,
|
[36] |
Zhou, Y.H., Xie, X., Wang, C.,
|
/
〈 | 〉 |