Laplacian sparse dictionary learning for image classification based on sparse representation

Fang LI, Jia SHENG, San-yuan ZHANG

PDF(879 KB)
PDF(879 KB)
Front. Inform. Technol. Electron. Eng ›› 2017, Vol. 18 ›› Issue (11) : 1795-1805. DOI: 10.1631/FITEE.1600039
Article
Article

Laplacian sparse dictionary learning for image classification based on sparse representation

Author information +
History +

Abstract

Sparse representation is a mathematical model for data representation that has proved to be a powerful tool for solving problems in various fields such as pattern recognition, machine learning, and computer vision. As one of the building blocks of the sparse representation method, dictionary learning plays an important role in the minimization of the reconstruction error between the original signal and its sparse representation in the space of the learned dictionary. Although using training samples directly as dictionary bases can achieve good performance, the main drawback of this method is that it may result in a very large and inefficient dictionary due to noisy training instances. To obtain a smaller and more representative dictionary, in this paper, we propose an approach called Laplacian sparse dictionary (LSD) learning. Our method is based on manifold learning and double sparsity. We incorporate the Laplacian weighted graph in the sparse representation model and impose the l1-norm sparsity on the dictionary. An LSD is a sparse overcomplete dictionary that can preserve the intrinsic structure of the data and learn a smaller dictionary for each class. The learned LSD can be easily integrated into a classification framework based on sparse representation. We compare the proposed method with other methods using three benchmark-controlled face image databases, Extended Yale B, ORL, and AR, and one uncontrolled person image dataset, i-LIDS-MA. Results show the advantages of the proposed LSD algorithm over state-of-the-art sparse representation based classification methods.

Keywords

Sparse representation / Laplacian regularizer / Dictionary learning / Double sparsity / Manifold

Cite this article

Download citation ▾
Fang LI, Jia SHENG, San-yuan ZHANG. Laplacian sparse dictionary learning for image classification based on sparse representation. Front. Inform. Technol. Electron. Eng, 2017, 18(11): 1795‒1805 https://doi.org/10.1631/FITEE.1600039

RIGHTS & PERMISSIONS

2017 Zhejiang University and Springer-Verlag GmbH Germany
PDF(879 KB)

Accesses

Citations

Detail

Sections
Recommended

/