Non-negativematrix factorization based unmixing for principal component transformed hyperspectral data
Xiu-rui GENG, Lu-yan JI, Kang SUN
Non-negativematrix factorization based unmixing for principal component transformed hyperspectral data
Non-negative matrix factorization (NMF) has been widely used in mixture analysis for hyperspectral remote sensing. When used for spectral unmixing analysis, however, it has two main shortcomings: (1) since the dimensionality of hyperspectral data is usually very large, NMF tends to suffer from large computational complexity for the popular multiplicative iteration rule; (2) NMF is sensitive to noise (outliers), and thus the corrupted data will make the results of NMF meaningless. Although principal component analysis (PCA) can be used to mitigate these two problems, the transformed data will contain negative numbers, hindering the direct use of the multiplicative iteration rule of NMF. In this paper, we analyze the impact of PCA on NMF, and find that multiplicative NMF can also be applicable to data after principal component transformation. Based on this conclusion, we present a method to perform NMF in the principal component space, named ‘principal component NMF’ (PCNMF). Experimental results show that PCNMF is both accurate and time-saving.
Non-negative matrix factorization (NMF) / Principal component analysis (PCA) / Endmember / Hyperspectral
[1] |
Ambikapathi, A., Chan, T.H., Ma, W.K.,
|
[2] |
Berman, M., Kiiveri, H., Lagerstrom, R.,
|
[3] |
Bioucas-Dias, J.M., 2009. A variable splitting augmented Lagrangian approach to linear spectral unmixing. 1st Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, p.1–4. http://dx.doi.org/10.1109/WHISPERS.2009.5289072
|
[4] |
Bioucas-Dias, J.M., Plaza, A., Dobigeon, N.,
|
[5] |
Boardman, J.W., 1992. Automated spectral unmixing of AVIRIS data using convex geometry concepts. Summaries of the 4th Annual JPL Airborne Geoscience Workshop, p.11–14.
|
[6] |
Chan, T.H., Chi, C.Y., Huang, Y.M.,
|
[7] |
Chang, C.I., Wu, C.C., Liu, M.,
|
[8] |
Craig, M.D., 1994. Minimum-volume transforms for remotely sensed data. IEEE Trans. Geosci. Remote Sens., 32(3):542–552. http://dx.doi.org/10.1109/36.297973
|
[9] |
Geng, X.R., Ji, L.Y., Zhao, Y.C.,
|
[10] |
Geng, X.R., Xiao, Z.Q., Ji, L.Y.,
|
[11] |
Geng, X.R., Sun, K., Ji, L.Y.,
|
[12] |
Green, B.F., 1952. The orthogonal approximation of an oblique structure in factor analysis. Psychometrika, 17(4):429–440. http://dx.doi.org/10.1007/BF02288918
|
[13] |
Green, R.O., Eastwood, M.L., Sarture, C.M.,
|
[14] |
Heinz, D.C., Chang, C.I., 2001. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens., 39(3):529–545. http://dx.doi.org/10.1109/36.911111
|
[15] |
Hendrix, E.M.T., Garcia, I., Plaza, J.,
|
[16] |
Heylen, R., Burazerovic, D., Scheunders, P., 2011. Fully constrained least squares spectral unmixing by simplex projection. IEEE Trans. Geosci. Remote Sens., 49(11):4112–4122. http://dx.doi.org/10.1109/TGRS.2011.2155070
|
[17] |
Huck, A., Guillaume, M., Blanc-Talon, J., 2010. Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens., 48(6):2590–2602. http://dx.doi.org/10.1109/TGRS.2009.2038483
|
[18] |
Ji, L.Y., Geng, X.R., Yu, K.,
|
[19] |
Ji, L.Y., Geng, X.R., Sun, K.,
|
[20] |
Jia, S., Qian, Y.T., 2009. Constrained nonnegative matrix factorization for hyperspectral unmixing. . IEEE Trans Geosci. Remote Sens., 47(1):161–173. http://dx.doi.org/10.1109/TGRS.2008.2002882
|
[21] |
Jolliffe, I.T., 2002. Principal Component Analysis. Springer.
|
[22] |
Keshava, N., Mustard, J.F., 2002. Spectral unmixing. IEEE Signal Process. Mag., 19(1):44–57. http://dx.doi.org/10.1109/79.974727
|
[23] |
Lee, D.D., Seung, H.S., 1999. Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755):788–791. http://dx.doi.org/10.1038/44565
|
[24] |
Li, J., Bioucas-Dias, J.M., 2008. Minimum volume simplex analysis: a fast algorithm to unmix hyperspectral data. IEEE Int. Geoscience and Remote Sensing Symp., p.250–253. http://dx.doi.org/10.1109/IGARSS.2008.4779330
|
[25] |
Liu, J.M., Zhang, J.S., 2012. A new maximum simplex volume method based on householder transformation for endmember extraction. IEEE Trans. Geosci. Remote Sens., 50(1):104–118. http://dx.doi.org/10.1109/TGRS.2011.2158829
|
[26] |
Liu, X.S., Xia, W., Wang, B.,
|
[27] |
Miao, L.D., Qi, H.R., 2007. Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization. IEEE Trans. Geosci. Remote Sens., 45(3):765–777. http://dx.doi.org/10.1109/TGRS.2006.888466
|
[28] |
Nascimento, J.M.P., Bioucas-Dias, J.M., 2005. Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens., 43(4):898–910. http://dx.doi.org/10.1109/TGRS.2005.844293
|
[29] |
Neville, R.A., Staenz, K., Szeredi, T.,
|
[30] |
Parente, M., Plaza, A., 2010. Survey of geometric and statistical unmixing algorithms for hyperspectral images. 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, p.1–4. http://dx.doi.org/10.1109/WHISPERS.2010.5594929
|
[31] |
Plaza, A., Martinez, P., Perez, R.,
|
[32] |
Schönemann, P.H., 1966. A generalized solution of the orthogonal procrustes problem. Psychometrika, 31(1):1–10. http://dx.doi.org/10.1007/BF02289451
|
[33] |
Sun, K., Geng, X.R., Wang, P.S.,
|
[34] |
Swayze, G., Clark, R.N., Kruse, F.,
|
[35] |
Tao, X.T., Wang, B., Zhang, L.M.,
|
[36] |
Tao, X.T., Wang, B., Zhang, L.M.,
|
[37] |
Winter, M.E., 1999. N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data. SPIE, 3753:266–275.
|
[38] |
Zhang, J.K., Rivard, B., Rogge, D.M., 2008. The successive projection algorithm (SPA), an algorithm with a spatial constraint for the automatic search of endmembers in hyperspectral data. Sensors, 8(2):1321–1342. http://dx.doi.org/10.3390/s8021321
|
[39] |
Zhu, F.Y., Wang, Y., Xiang, S.M.,
|
[40] |
Zymnis, A., Kim, S.J., Skaf, J.,
|
/
〈 | 〉 |