A virtual service placement approach based on improved quantum genetic algorithm<FootNote> Project supported by the National Basic Research Program (973) of China (Nos. 2012CB315901 and 2013CB329104), the National Natural Science Foundation of China (Nos. 61309019, 61372121, 61572519, and 61502530), and the National High-Tech R&D Program (863) of China (Nos. 2015AA016102 and 2013AA013505) </FootNote>

Gang XIONG, Yu-xiang HU, Le TIAN, Ju-long LAN, Jun-fei LI, Qiao ZHOU

PDF(1028 KB)
PDF(1028 KB)
Front. Inform. Technol. Electron. Eng ›› 2016, Vol. 17 ›› Issue (7) : 661-671. DOI: 10.1631/FITEE.1500494
Article
Article

A virtual service placement approach based on improved quantum genetic algorithm<FootNote> Project supported by the National Basic Research Program (973) of China (Nos. 2012CB315901 and 2013CB329104), the National Natural Science Foundation of China (Nos. 61309019, 61372121, 61572519, and 61502530), and the National High-Tech R&D Program (863) of China (Nos. 2015AA016102 and 2013AA013505) </FootNote>

Author information +
History +

Abstract

Despite the critical role that middleboxes play in introducing new network functionality, management and innovation of them are still severe challenges for network operators, since traditional middleboxes based on hardware lack service flexibility and scalability. Recently, though new networking technologies, such as network function virtualization (NFV) and softwaredefined networking (SDN), are considered as very promising drivers to design cost-efficient middlebox service architectures, how to guarantee transmission efficiency has drawn little attention under the condition of adding virtual service process for traffic. Therefore, we focus on the service deployment problem to reduce the transport delay in the network with a combination of NFV and SDN. First, a framework is designed for service placement decision, and an integer linear programming model is proposed to resolve the service placement and minimize the network transport delay. Then a heuristic solution is designed based on the improved quantum genetic algorithm. Experimental results show that our proposed method can calculate automatically the optimal placement schemes. Our scheme can achieve lower overall transport delay for a network compared with other schemes and reduce 30% of the average traffic transport delay compared with the random placement scheme.

Keywords

Software-defined networking (SDN) / Network function virtualization / Quantum genetic algorithm / Middlebox

Cite this article

Download citation ▾
Gang XIONG, Yu-xiang HU, Le TIAN, Ju-long LAN, Jun-fei LI, Qiao ZHOU. A virtual service placement approach based on improved quantum genetic algorithm<FootNote> Project supported by the National Basic Research Program (973) of China (Nos. 2012CB315901 and 2013CB329104), the National Natural Science Foundation of China (Nos. 61309019, 61372121, 61572519, and 61502530), and the National High-Tech R&D Program (863) of China (Nos. 2015AA016102 and 2013AA013505) </FootNote>. Front. Inform. Technol. Electron. Eng, 2016, 17(7): 661‒671 https://doi.org/10.1631/FITEE.1500494

References

[1]
Anderson, J.W., Braud, R., Kapoor, R., et al., 2012. xOMB: extensible open middleboxes with commodity servers. Proc. 8th ACM/IEEE Symp. on Architectures for Networking and Communications Systems, p.49–60. http://dx.doi.org/10.1145/2396556.2396566
[2]
Anwer, B., Benson, T., Feamster, N., et al., 2013. A slick control plane for network middleboxes. Proc. 2nd ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, p.147–148. http://dx.doi.org/10.1145/2491185.2491223
[3]
Basta, A., Kellerer, W., Hoffmann, M., et al., 2014. Applying NFV and SDN to LTE mobile core gateways, the functions placement problem. Proc. 4th Workshop on All Things Cellular: Operations, Applications, and Challenges, p.33–38. http://dx.doi.org/10.1145/2627585.2627592
[4]
Carpenter, B., Brim, S., 2002. Middleboxes: Taxonomy and Issues, RFC 3234. The Internet Engineering Task Force. Available fromhttp://www.rfc-base.org/rfc-3234.html.
[5]
Cheng, G.Z., Chen, H.C., Hu, H.C., et al., 2015. Enabling network function combination via service chain instantiation. Comput. Netw., 92(Part 2):396–407. http://dx.doi.org/10.1016/j.comnet.2015.09.015
[6]
Chiosi, M., Clarke, D., Willis, P., et al., 2012. Network functions virtualisation—introductory white paper. SDN and OpenFlow World Congress. Available fromhttps://portal.etsi.org/NFV/NFV_White_Paper.pdf.
[7]
de Turck, F., Boutaba, R., Chemouil, P., et al., 2015. Guest editors’ introduction: special issue on efficient management of SDN/NFV-based systems—part I. IEEE Trans. Netw. Serv. Manag., 12(1):1–3. http://dx.doi.org/10.1109/TNSM.2015.2403775
[8]
Fayazbakhsh, S.K., Chaing, L., Sekar, V., et al., 2014. Enforcing network-wide policies in the presence of dynamic middlebox actions using FlowTags. 11th USENIX Symp. on Networked Systems Design and Implementation, p.533–546.
[9]
Gember, A., Grandl, R., Anand, A., et al., 2012a. Stratos: virtual middleboxes as first-class entities. Technical Report, No. TR1771, University of Wisconsin-Madison, WI.
[10]
Gember, A., Prabhu, P., Ghadiyali, Z., et al., 2012b. Towards software-defined middlebox networking. Proc. 11th ACM Workshop on Hot Topics in Networks, p.7–12. http://dx.doi.org/10.1145/2390231.2390233
[11]
Gember, A., Viswanathan, R., Prakash, C., et al., 2014. OpenNF: enabling innovation in network function control. Proc. ACM Conf. on SIGCOMM, p.163–174. http://dx.doi.org/10.1145/2740070.2626313
[12]
Greenberg, A., Hjalmtysson, G., Maltz, D.A., et al., 2005. A clean slate 4D approach to network control and management. ACM SIGCOMM Comput. Commun. Rev., 35(5):41–54. http://dx.doi.org/10.1145/1096536.1096541
[13]
Gude, N., Koponen, T., Pettit, J., et al., 2008. NOX: towards an operating system for networks. ACM SIGCOMM Comput. Commun. Rev., 38(3):105–110. http://dx.doi.org/10.1145/1384609.1384625
[14]
Gushchin, A., Walid, A., Tang, A., 2015. Scalable routing in SDN-enabled networks with consolidated middleboxes. Proc. ACM SIGCOMM Workshop on Hot Topics in Middleboxes and Network Function Virtualization, p.55–60. http://dx.doi.org/10.1145/2785989.2785999
[15]
Hwang, J., Ramakrishnan, K.K., Wood, T., 2015. NetVM: high performance and flexible networking using virtualization on commodity platforms. IEEE Trans. Netw. Serv. Manag., 12(1):34–47. http://dx.doi.org/10.1109/TNSM.2015.2401568
[16]
Joseph, D., Stoica, I., 2008. Modeling middleboxes. IEEE Netw., 22(5):20–25. http://dx.doi.org/10.1109/MNET.2008.4626228
[17]
Lange, S., Gebert, S., Zinner, T., et al., 2015. Heuristic approaches to the controller placement problem in large scale SDN networks. IEEE Trans. Netw. Serv. Manag., 12(1):4–17. http://dx.doi.org/10.1109/TNSM.2015.2402432
[18]
Li, Y., Chen, M., 2015. Software-defined network function virtualization: a survey. IEEE Access, 3:2542–2553. http://dx.doi.org/10.1109/ACCESS.2015.2499271
[19]
Lu, B., Chen, J.Y., Cui, H.Y., et al., 2013. A virtual network mapping algorithm based on integer programming. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 14(12): 899–908. http://dx.doi.org/10.1631/jzus.C1300120
[20]
Malossini, A., Blanzieri, E., Calarco., T., 2008. Quantum genetic optimization. IEEE Trans. Evol. Comput., 12(2): 231–241. http://dx.doi.org/10.1109/TEVC.2007.905006
[21]
Matias, J., Garay, J., Toledo, N., et al., 2015. Toward an SDN-enabled NFV architecture. IEEE Commun. Mag., 53(4):187–193. http://dx.doi.org/10.1109/MCOM.2015.7081093
[22]
McKeown, N., Anderson, T., Balakrishnan, H., et al., 2008. OpenFlow: enabling innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev., 38(2):69–74. http://dx.doi.org/10.1145/1355734.1355746
[23]
Mohammadkhan, A., Ghapani, S., Liu, G.Y., et al., 2015. Virtual function placement and traffic steering in flexible and dynamic software defined networks. IEEE Int. Workshop on Local and Metropolitan Area Networks, p.1–6. http://dx.doi.org/10.1109/LANMAN.2015.7114738
[24]
Mohammed, A.M., Elhefnawy, N.A., El-Sherbiny, M.M., et al., 2012. Quantum crossover based quantum genetic algorithm for solving non-linear programming. 8th Int. Conf. on Informatics and Systems, p.BIO-145–BIO-153.
[25]
Nunes, B.A.A., Mendonca, M., Nguyen, X.N., et al., 2014. A survey of software-defined networking: past, present, and future of programmable networks. IEEE Commun. Surv. Tutor., 16(3):1617–1634. http://dx.doi.org/10.1109/SURV.2014.012214.00180
[26]
Open Networking Foundation (ONF), 2012. Software-Defined Networking: the New Norm for Networks. ONF White Paper.
[27]
Qazi, Z.A., Tu, C.C., Chiang, L., et al., 2013. SIMPLE-fying middlebox policy enforcement using SDN. Proc. ACM SIGCOMM Conf., p.27–38. http://dx.doi.org/10.1145/2486001.2486022
[28]
Qi, H., Shiraz, M., Liu, J.Y., et al., 2014. Data center network architecture in cloud computing: review, taxonomy, and open research issues. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 15(9):776–793. http://dx.doi.org/10.1631/jzus.C1400013
[29]
Rajagopalan, S., Williams, D., Jamjoom, H., et al., 2013. Split/Merge: system support for elastic execution in virtual middleboxes. 10th USENIX Symp. on Networked Systems Design and Implementation, p.227–240.
[30]
Sekar, V., Ratnasamy, S., Reiter, M.K., et al., 2011. The middlebox manifesto: enabling innovation in middlebox deployment. Proc. 10th ACM Workshop on Hot Topics in Networks, p.1–6. http://dx.doi.org/10.1145/2070562.2070583
[31]
Sekar, V., Egi, N., Ratnasamy, S., et al., 2012. Design and implementation of a consolidated middlebox architecture. Proc. 9th USENIX Conf. on Networked Systems Design and Implementation, p.323–336.
[32]
Shen, J., He, W.B., Liu, X., et al., 2015. End-to-end delay analysis for networked systems. Front. Inform. Technol. Electron. Eng., 16(9):732–743. http://dx.doi.org/10.1631/FITEE.1400414
[33]
Sherry, J., Hasan, S., Scott, C., et al., 2012. Making middleboxes someone else’s problem: network processing as a cloud service. ACM SIGCOMM Comput. Commun. Rev., 42(4):13–24. http://dx.doi.org/10.1145/2377677.2377680
[34]
Walfish, M., Stribling, J., Krohn, M., et al., 2004. Middleboxes no longer considered harmful. Proc. 6th Symp. on Operating Systems Design & Implementation, p.215–230.
[35]
Zegura, E.W., Calvert, K.L., Bhattacharjee, S., 1996. How to model an internetwork. 15th Annual Joint Conf. of the IEEE Computer and Communications Societies, p.594–602. http://dx.doi.org/10.1109/INFCOM.1996.493353
[36]
Zhang, Y., Beheshti, N., Beliveau, L., et al., 2013. StEERING: a software-defined networking for inline service chaining. Proc. 21st IEEE Int. Conf. on Network Protocols, p.1–10. http://dx.doi.org/10.1109/ICNP.2013.6733615

RIGHTS & PERMISSIONS

2016 Zhejiang University and Springer-Verlag Berlin Heidelberg
PDF(1028 KB)

Accesses

Citations

Detail

Sections
Recommended

/