Nonlinear programming control using differential aerodynamic drag for CubeSat formation flying

Sheng-chao DENG, Tao MENG, Zhong-he JIN

PDF(805 KB)
PDF(805 KB)
Front. Inform. Technol. Electron. Eng ›› 2017, Vol. 18 ›› Issue (7) : 867-881. DOI: 10.1631/FITEE.1500493
Article
Article

Nonlinear programming control using differential aerodynamic drag for CubeSat formation flying

Author information +
History +

Abstract

Because of their volume and power limitation, it is difficult for CubeSats to configure a traditional propulsion system. Atmospheric drag is one of the space environmental forces that low-orbit satellites can use to realize orbit adjustment. This paper presents an integrated control strategy to achieve the desired in-track formation through the atmospheric drag difference, which will be used on ZJUCubeSat, the next pico-satellite of Zhejiang University and one of the participants of the international QB50 project. The primary mission of the QB50 project is to explore the near-Earth thermosphere and ionosphere at the orbital height of 90–300 km. Atmospheric drag cannot be ignored and has a major impact on both attitude and orbit of the satellite at this low orbital height. We conduct aerodynamics analysis and design a multidimensional nonlinear constraint programming (MNLP) strategy to calculate different desired area–mass ratios and corresponding hold times for orbit adjustment, taking both the semimajor axis and eccentricity into account. In addition, area–mass ratio adjustment is achieved by pitch attitude maneuver without any deployable mechanism or corresponding control. Numerical simulation based on ZJUCubeSat verifies the feasibility and advantage of this design.

Keywords

QB50 / ZJUCubeSat / Atmospheric drag / Formation flying

Cite this article

Download citation ▾
Sheng-chao DENG, Tao MENG, Zhong-he JIN. Nonlinear programming control using differential aerodynamic drag for CubeSat formation flying. Front. Inform. Technol. Electron. Eng, 2017, 18(7): 867‒881 https://doi.org/10.1631/FITEE.1500493

References

[1]
Bazaraa,M.S., Sherali, H.D., Shetty,C.M. , 2013. Nonlinear Programming: Theory and Algorithms. John Wiley & Sons, New Jersey.
[2]
Byrd,R.H., Hribar, M.E., Nocedal,J. , 1999. An interior point algorithm for large-scale nonlinear programming. SIAM J. Optim., 9(4):877–900. https://doi.org/10.1137/S1052623497325107
[3]
Cai,B., Wang,H., Zhu,X., , 2011. Design of the Earth magnetic field measurement system for pico-satellites. Chin. J. Sens. Actuat., 27(8):1–5 (in Chinese). https://doi.org/10.3969/j.issn.1004-1699.2011.08.026
[4]
Campbell,M., Fullmer, R.R., Hall,C.D. , 2000. The ION-F formation flying experiments. AAS/AIAA Space Flight Mechanics Meeting, p.135–149. https://doi.org/10.13140/2.1.3903.3603
[5]
Drob,D., Emmert, J., Crowley,G. , , 2008. An empirical model of the Earth’s horizontal wind fields: HWM07. J. Geophys. Res. Space Phys., 113:A12304. https://doi.org/10.1029/2008JA013668
[6]
Eyer,J.K., Damaren, C.J., Zee,R.E. , , 2007. A formation flying control algorithm for the CanX-4&5 low Earth orbit nanosatellite mission. Space Technol., 27(4):147–158.
[7]
Gaposchkin,E.M., 1994. Calculation of Satellite Drag Coef-ficients. Technical Report, DTIC Document.
[8]
Horsley,M., Nikolaev, S., Pertica,A. , 2013. Small satellite rendezvous using differential lift and drag. J. Guid. Contr. Dynam., 36(2):445–453. https://doi.org/10.2514/1.57327
[9]
Lambert,C., Kumar,B.S., Hamel,J.F., , 2012. Imple-mentation and performance of formation flying using differential drag. Acta Astronaut., 71:68–82. https://doi.org/10.1016/j.actaastro.2011.08.013
[10]
Leonard,C.L., Hollister, W.M., Bergmann,E.V. , 1989. Orbital formationkeeping with differential drag. J. Guid. Contr. Dynam., 12(1):108–113. https://doi.org/10.2514/3.20374
[11]
Liu,L., 2000. Orbit Theory of Spacecraft. National Defense Industry Press, Beijing, p.86–90 (in Chinese).
[12]
Lohn,J.D., Hornby, G.S., Linden,D.S. , 2005. An evolved antenna for deployment on NASA’s Space Technology 5 Mission. In: O’Reilly, U.M., Yu, T., Riolo, R., et al. (Eds.), Genetic Programming Theory and Practice II. Springer, New York, p.301–315. https://doi.org/10.1007/0-387-23254-0_18
[13]
Marcos,F.A., 2006. New satellite drag modeling capabilities. 44th AIAA Aerospace Sciences Meeting and Exhibit, p.1–13. https://doi.org/10.2514/6.2006-470
[14]
Meng,T., Wang,H., Jin,Z.H., , 2009. Attitude stabiliza-tion of a pico-satellite by momentum wheel and magnetic coils. J. Zhejiang Univ.-Sci. A, 10(11):1617–1623. https://doi.org/10.1631/jzus.A0820425
[15]
Moe,K., Moe,M.M., 2005. Gas–surface interactions and satellite drag coefficients. Planet. Space Sci., 53(8):793–801. https://doi.org/10.1016/j.pss.2005.03.005
[16]
Montenbruck,O., Gill,E., 2012. Satellite Orbits: Models, Methods and Applications. Springer Science & Business Media.
[17]
Pérez,D., Bevilacqua, R., 2013. Differential drag spacecraft rendezvous using an adaptive Lyapunov control strategy. Acta Astronaut., 83:196–207. https://doi.org/10.1016/j.actaastro.2012.09.005
[18]
Picone,J.M., Hedin,A.E., Drob,D.P., , 2002. NRLMSISE-00 empirical model of the atmosphere: sta-tistical comparisons and scientific issues. J. Geophys. Res. Space Phys., 107(A12):SIA15-1–SIA15-16. https://doi.org/10.1029/2002JA009430
[19]
Reid,T., Misra,A.K., 2011. Formation flight of satellites in the presence of atmospheric drag. J. Aerosp. Eng. Sci. Appl., 3(1):64–91.
[20]
Reinhard,R., Asma,C., Muylaert,J. , 2012. The QB50 project: a Network of 50 Cubesats. Von Karman Institute for Fluid Dynamics, Rhode Saint Genese, Belgium.
[21]
Schamberg,R., 1959. A New Analytic Representation of Sur-face Interaction for Hyperthermal Free Molecule Flow with Application to Neutral-Particle Drag Estimates of Satellites. Rand Corporation.
[22]
Schaub,H., Alfriend, K.T., 2002. Hybrid Cartesian and orbit element feedback law for formation flying spacecraft. J. Guid. Contr. Dynam., 25(2):387–393. https://doi.org/10.2514/2.4893
[23]
Vallado,D.A., 2001. Fundamentals of Astrodynamics and Applications. Springer Science & Business Media, Berlin.
[24]
Vallado,D.A., Finkleman, D., 2014. A critical assessment of satellite drag and atmospheric density modeling. Acta Astronaut., 95:141–165. https://doi.org/10.1016/j.actaastro.2013.10.005
[25]
Varma,S., Kumar,K.D., 2012. Multiple satellite formation flying using differential aerodynamic drag. J. Spacecr. Rock., 49(2):325–336. https://doi.org/10.2514/1.52395
[26]
Wang,J., Wang,H., Ying,P., , 2012. Design of four- quadrant analog Sun sensor. Chin. J. Sens. Actuat., 25(12): 1659–1663 (in Chinese). https://doi.org/10.3969/j.issn.1004-1699.2012.12.007
[27]
Yang,M., Wang,H., Wu,C.J., , 2012. Space flight vali-dation of design and engineering of the ZDPS-1A pico-satellite. Chin. J. Aeronaut., 25(5):725–738. https://doi.org/10.1016/S1000-9361(11)60439-1
[28]
Yao,H., Zeng,G.Q., Hu,M., 2010. Time-optimal aerodynamic control for along-track separation of spacecraft formation flying. J. Acad. Equip. Comm. Technol., 21(1):70–73 (in Chinese). https://doi.org/10.3783/j.issn.1673-0127.2010.01.017

RIGHTS & PERMISSIONS

2017 Zhejiang University and Springer-Verlag Berlin Heidelberg
PDF(805 KB)

Accesses

Citations

Detail

Sections
Recommended

/