Micro-angle tilt detection for the rotor of a novel rotational gyroscopewith a 0.47’’ resolution
Hai LI, Xiao-wei LIU, Rui WENG, Hai-feng ZHANG
Micro-angle tilt detection for the rotor of a novel rotational gyroscopewith a 0.47’’ resolution
Differential capacitive detection has been widely used in the displacement measurement of the proof mass of vibratory gyroscopes, but it did not achieve high resolutions in angle detection of rotational gyroscopes due to restrictions in structure, theory, and interface circuitry. In this paper, a differential capacitive detection structure is presented to measure the tilt angle of the rotor of a novel rotational gyroscope. A mathematical model is built to study how the structure’s capacitance changes with the rotor tilt angles. The relationship between differential capacitance and structural parameters is analyzed, and preliminarily optimized size parameters are adopted. A lownoise readout interface circuit is designed to convert differential capacitance changes to voltage signals. Rate table test results of the gyroscope show that the smallest resolvable tilt angle of the rotor is less than 0.47’’ (0.00013◦), and the nonlinearity of the angle detection structure is 0.33%, which can be further improved. The results indicate that the proposed detection structure and the circuitry are helpful for a high accuracy of the gyroscope.
Micro-angle detection / Differential capacitive structure / Rotational gyroscope / Structure optimization
[1] |
Aaltonen, L., Halonen , K.A.I., 2010. An analog drive loop for a capacitive MEMS gyroscope. Anal. Integr. Circ. Sig. Process., 63(3):465–476. http://dx.doi.org/10.1007/s10470-009-9395-6
|
[2] |
Alper, S.E., Temiz, Y., Akin, T., 2008. A compact angular rate sensor system using a fully decoupled silicon-onglass MEMS gyroscope. J. Microelectromech. Syst., 17(6):1418–1429. http://dx.doi.org/10.1109/JMEMS.2008.2007274
|
[3] |
Challoner, A.D., Ge , H.H., Liu, J.Y. , 2014. Boeing disc resonator gyroscope.IEEE/ION Position, Location and Navigation Symp., p.504–514. http://dx.doi.org/10.1109/PLANS.2014.6851410
|
[4] |
Cui, F., Chen, W., Su, Y.,
|
[5] |
Damrongsak, B., Kraft, M., 2006. Design and simulation of a micromachined electrostatically suspended gyroscope.IET Seminar on MEMS Sensors and Actuators, p.267–272. http://dx.doi.org/10.1049/ic:20060468
|
[6] |
Fang, R., Lu, W., Tao, T.,
|
[7] |
Feng, L., Zhang, Z., Sun, Y.,
|
[8] |
Gindila, M.V., Kraft, M., 2003. Electronic interface design for an electrically floating micro-disc. J. Micromech. Microeng., 13(4):S11–S16. http://dx.doi.org/10.1088/0960-1317/13/4/302
|
[9] |
Hays, K., Schmidt , R., Wilson, W. ,
|
[10] |
Houlihan, R., Kraft, M., 2002. Modelling of an accelerometer based on a levitated proof mass. J. Micromech. Microeng., 12(4):495. http://dx.doi.org/10.1088/0960-1317/12/4/325
|
[11] |
Huang, X.G., Chen, W.Y., Liu, W. ,
|
[12] |
Lam, Q.M., Stamatakos , N., Woodruff, C. ,
|
[13] |
Li, H., Liu, X., Wang, B.,
|
[14] |
Liu, J., Shen, Q., Qin, W., 2015. Signal processing technique for combining numerous MEMS gyroscopes based on dynamic conditional correlation. Micromachines, 6(6):684–698. http://dx.doi.org/10.3390/mi6060684
|
[15] |
Liu, K., Zhang, W.P., Chen, W.Y. ,
|
[16] |
Liu, W., Chen, W.Y., Zhang, W.P. ,
|
[17] |
Murakoshi, T., Endo, Y., Fukatsu, K. ,
|
[18] |
Northemann, T., Maurer, M., Rombach, S. ,
|
[19] |
Shearwood, C., Ho, K.Y., Williams, C.B. ,
|
[20] |
Sung, W.T., Sung, S., Lee, J.Y.,
|
[21] |
Tsai, N.C., Huang, W.M., Chiang, C.W. , 2009. Magnetic actuator design for single-axis micro-gyroscopes. Microsyst. Technol., 15(4):493–503. http://dx.doi.org/10.1007/s00542-008-0769-y
|
[22] |
Xia, D., Yu, C., Kong, L., 2014. The development of micromachined gyroscope structure and circuitry technology. Sensors, 14(1):1394–1473. http://dx.doi.org/10.3390/s140101394
|
[23] |
Xia, D., Kong, L., Gao, H., 2015. Design and analysis of a novel fully decoupled tri-axis linear vibratory gyroscope with matched modes. Sensors, 15(7):16929–16955. http://dx.doi.org/10.3390/s150716929
|
[24] |
Xu, H., Liu, X., Yin, L., 2015. A closed-loop ΣΔ interface for a high-Q micromechanical capacitive accelerometer with 200 ng/ Hz input noise density. IEEE J. Solid-State Circ., 50(9):2101–2112. http://dx.doi.org/10.1109/JSSC.2015.2428278
|
[25] |
Xue, L., Jiang, C., Wang, L.,
|
/
〈 | 〉 |