Micro-angle tilt detection for the rotor of a novel rotational gyroscopewith a 0.47’’ resolution

Hai LI, Xiao-wei LIU, Rui WENG, Hai-feng ZHANG

PDF(882 KB)
PDF(882 KB)
Front. Inform. Technol. Electron. Eng ›› 2017, Vol. 18 ›› Issue (5) : 591-598. DOI: 10.1631/FITEE.1500454
Article
Article

Micro-angle tilt detection for the rotor of a novel rotational gyroscopewith a 0.47’’ resolution

Author information +
History +

Abstract

Differential capacitive detection has been widely used in the displacement measurement of the proof mass of vibratory gyroscopes, but it did not achieve high resolutions in angle detection of rotational gyroscopes due to restrictions in structure, theory, and interface circuitry. In this paper, a differential capacitive detection structure is presented to measure the tilt angle of the rotor of a novel rotational gyroscope. A mathematical model is built to study how the structure’s capacitance changes with the rotor tilt angles. The relationship between differential capacitance and structural parameters is analyzed, and preliminarily optimized size parameters are adopted. A lownoise readout interface circuit is designed to convert differential capacitance changes to voltage signals. Rate table test results of the gyroscope show that the smallest resolvable tilt angle of the rotor is less than 0.47’’ (0.00013), and the nonlinearity of the angle detection structure is 0.33%, which can be further improved. The results indicate that the proposed detection structure and the circuitry are helpful for a high accuracy of the gyroscope.

Keywords

Micro-angle detection / Differential capacitive structure / Rotational gyroscope / Structure optimization

Cite this article

Download citation ▾
Hai LI, Xiao-wei LIU, Rui WENG, Hai-feng ZHANG. Micro-angle tilt detection for the rotor of a novel rotational gyroscopewith a 0.47’’ resolution. Front. Inform. Technol. Electron. Eng, 2017, 18(5): 591‒598 https://doi.org/10.1631/FITEE.1500454

References

[1]
Aaltonen, L., Halonen , K.A.I., 2010. An analog drive loop for a capacitive MEMS gyroscope. Anal. Integr. Circ. Sig. Process., 63(3):465–476. http://dx.doi.org/10.1007/s10470-009-9395-6
[2]
Alper, S.E., Temiz, Y., Akin, T., 2008. A compact angular rate sensor system using a fully decoupled silicon-onglass MEMS gyroscope. J. Microelectromech. Syst., 17(6):1418–1429. http://dx.doi.org/10.1109/JMEMS.2008.2007274
[3]
Challoner, A.D., Ge , H.H., Liu, J.Y. , 2014. Boeing disc resonator gyroscope.IEEE/ION Position, Location and Navigation Symp., p.504–514. http://dx.doi.org/10.1109/PLANS.2014.6851410
[4]
Cui, F., Chen, W., Su, Y., , 2004. Design of electrostatically levitated micromachined rotational gyroscope based on UV-LIGA technology. SPIE, 5641:264–275. http://dx.doi.org/10.1117/12.575632
[5]
Damrongsak, B., Kraft, M., 2006. Design and simulation of a micromachined electrostatically suspended gyroscope.IET Seminar on MEMS Sensors and Actuators, p.267–272. http://dx.doi.org/10.1049/ic:20060468
[6]
Fang, R., Lu, W., Tao, T., , 2012. A control and readout circuit with capacitive mismatch auto-compensation for MEMS vibratory gyroscope.IEEE 11th Int. Conf. on Solid-State and Integrated Circuit Technology, p.1–3. http://dx.doi.org/10.1109/ICSICT.2012.6467587
[7]
Feng, L., Zhang, Z., Sun, Y., , 2011. Differential pickup circuit design of a kind of Z-axis MEMS quartz gyroscope. Proc. Eng., 15:999–1003. http://dx.doi.org/10.1016/j.proeng.2011.08.185
[8]
Gindila, M.V., Kraft, M., 2003. Electronic interface design for an electrically floating micro-disc. J. Micromech. Microeng., 13(4):S11–S16. http://dx.doi.org/10.1088/0960-1317/13/4/302
[9]
Hays, K., Schmidt , R., Wilson, W. , , 2002. A submarine navigator for the 21st century.IEEE Position Location and Navigation Symp., p.179–188. http://dx.doi.org/10.1109/PLANS.2002.998906
[10]
Houlihan, R., Kraft, M., 2002. Modelling of an accelerometer based on a levitated proof mass. J. Micromech. Microeng., 12(4):495. http://dx.doi.org/10.1088/0960-1317/12/4/325
[11]
Huang, X.G., Chen, W.Y., Liu, W. , , 2007. High resolution differential capacitance detection scheme for micro levitated rotor gyroscope. Chin. J. Aeronaut., 20(6):546–551. http://dx.doi.org/10.1016/S1000-9361(07)60080-6
[12]
Lam, Q.M., Stamatakos , N., Woodruff, C. , , 2003. Gyro modeling and estimation of its random noise sources.AIAA Guidance, Navigation, and Control Conf. and Exhibit, p.1–11. http://dx.doi.org/10.2514/6.2003-5562
[13]
Li, H., Liu, X., Wang, B., , 2014. Impact of assembly on signal detection from thin-wall rotors of micro-gyroscopes. AIP Adv., 4(3):031341. http://dx.doi.org/10.1063/1.4869618
[14]
Liu, J., Shen, Q., Qin, W., 2015. Signal processing technique for combining numerous MEMS gyroscopes based on dynamic conditional correlation. Micromachines, 6(6):684–698. http://dx.doi.org/10.3390/mi6060684
[15]
Liu, K., Zhang, W.P., Chen, W.Y. , , 2009. The development of micro-gyroscope technology. J. Micromech. Microeng., 19(11):113001. http://dx.doi.org/10.1088/0960-1317/19/11/113001
[16]
Liu, W., Chen, W.Y., Zhang, W.P. , , 2008. Variablecapacitance micromotor with levitated diamagnetic rotor. Electron. Lett., 44(11):681–683. http://dx.doi.org/10.1049/el:20080528
[17]
Murakoshi, T., Endo, Y., Fukatsu, K. , , 2003. Electrostatically levitated ring-shaped rotationalgyro/accelerometer. Jpn. J. Appl. Phys., 42(4S): 2468–2472. http://dx.doi.org/10.1143/JJAP.42.2468
[18]
Northemann, T., Maurer, M., Rombach, S. , , 2010. A digital interface for gyroscopes controlling the primary and secondary mode using bandpass sigma-delta modulation. Sens. Actuat. A, 162(2):388–393. http://dx.doi.org/10.1016/j.sna.2010.05.034
[19]
Shearwood, C., Ho, K.Y., Williams, C.B. , , 2000. Development of a levitated micromotor for application as a gyroscope. Sens. Actuat. A, 83(1-3):85–92. http://dx.doi.org/10.1016/S0924-4247(00)00292-2
[20]
Sung, W.T., Sung, S., Lee, J.Y., , 2008. Development of a lateral velocity-controlled MEMS vibratory gyroscope and its performance test.J. Micromech. Microeng., 18(5):055028. http://dx.doi.org/10.1088/0960-1317/18/5/055028
[21]
Tsai, N.C., Huang, W.M., Chiang, C.W. , 2009. Magnetic actuator design for single-axis micro-gyroscopes. Microsyst. Technol., 15(4):493–503. http://dx.doi.org/10.1007/s00542-008-0769-y
[22]
Xia, D., Yu, C., Kong, L., 2014. The development of micromachined gyroscope structure and circuitry technology. Sensors, 14(1):1394–1473. http://dx.doi.org/10.3390/s140101394
[23]
Xia, D., Kong, L., Gao, H., 2015. Design and analysis of a novel fully decoupled tri-axis linear vibratory gyroscope with matched modes. Sensors, 15(7):16929–16955. http://dx.doi.org/10.3390/s150716929
[24]
Xu, H., Liu, X., Yin, L., 2015. A closed-loop ΣΔ interface for a high-Q micromechanical capacitive accelerometer with 200 ng/ Hz input noise density. IEEE J. Solid-State Circ., 50(9):2101–2112. http://dx.doi.org/10.1109/JSSC.2015.2428278
[25]
Xue, L., Jiang, C., Wang, L., , 2015. Noise reduction of MEMS gyroscope based on direct modeling for an angular rate signal. Micromachines, 6(2):266–280. http://dx.doi.org/10.3390/mi6020266

RIGHTS & PERMISSIONS

2017 Zhejiang University and Springer-Verlag Berlin Heidelberg
PDF(882 KB)

Accesses

Citations

Detail

Sections
Recommended

/