Attribute reduction in interval-valued information systems based on information entropies
Jian-hua DAI, Hu HU, Guo-jie ZHENG, Qing-hua HU, Hui-feng HAN, Hong SHI
Attribute reduction in interval-valued information systems based on information entropies
Interval-valued data appear as a way to represent the uncertainty affecting the observed values. Dealing with interval-valued information systems is helpful to generalize the applications of rough set theory. Attribute reduction is a key issue in analysis of interval-valued data. Existing attribute reduction methods for single-valued data are unsuitable for interval-valued data. So far, there have been few studies on attribute reduction methods for interval-valued data. In this paper, we propose a framework for attribute reduction in interval-valued data from the viewpoint of information theory. Some information theory concepts, including entropy, conditional entropy, and joint entropy, are given in interval-valued information systems. Based on these concepts, we provide an information theory view for attribute reduction in interval-valued information systems. Consequently, attribute reduction algorithms are proposed. Experiments show that the proposed framework is effective for attribute reduction in interval-valued information systems.
Rough set theory / Interval-valued data / Attribute reduction / Entropy
[1] |
Billard, L., Douzal-Chouakria, A., Diday, E., 2008. Symbolic Principal Component for Interval-Valued Observations. Available from https://hal.archivesouvertes.fr/hal-00361053.
|
[2] |
Bustince, H., Barrenechea, E., Pagola, M., 2006. Restricted equivalence functions. Fuzzy Sets Syst., 157(17):23332346. http://dx.doi.org/10.1016/j.fss.2006.03.018
|
[3] |
Dai, J.H., 2008. Rough 3-valued algebras. Inform. Sci., 178(8):1986–1996. http://dx.doi.org/10.1016/j.ins.2007.11.011
|
[4] |
Dai, J.H., Tian, H.W., 2013. Fuzzy rough set model for set-valued data. Fuzzy Sets Syst., 229:54–68. http://dx.doi.org/10.1016/j.fss.2013.03.005
|
[5] |
Dai, J.H., Xu, Q., 2012. Approximations and uncertainty measures in incomplete information systems. Inform. Sci., 198:62–80. http://dx.doi.org/10.1016/j.ins.2012.02.032
|
[6] |
Dai, J.H., Xu, Q., 2013. Attribute selection based on information gain ratio in fuzzy rough set theory with application to tumor classification. Appl. Soft Com-put., 13(1):211–221. http://dx.doi.org/10.1016/j.asoc.2012.07.029
|
[7] |
Dai, J.H., Wang, W.T., Xu, Q.,
|
[8] |
Dai, J.H., Tian, H.W., Wang, W.T.,
|
[9] |
Dai, J.H., Wang, W.T., Mi, J.S., 2013b. Uncertainty measurement for interval-valued information systems. Inform. Sci., 251:63–78. http://dx.doi.org/10.1016/j.ins.2013.06.047
|
[10] |
Dai, J.H., Wang, W.T., Xu, Q., 2013c. An uncertainty measureforincompletedecision tables andits applications. IEEE Trans. Cybern., 43(4):1277–1289. http://dx.doi.org/10.1109/TSMCB.2012.2228480
|
[11] |
Galar, M., Fernandez, J., Beliakov, G.,
|
[12] |
Hedjazi, L., Aguilar-Martin, J., Le Lann, M.V., 2011. Similarity-margin based feature selection for symbolic interval data. Patt. Recogn. Lett., 32(4):578–585. http://dx.doi.org/10.1016/j.patrec.2010.11.018
|
[13] |
Hu, Y.C., 2015. Flow-based tolerance rough sets for pattern classification. Appl. Soft Comput., 27:322–331. http://dx.doi.org/10.1016/j.asoc.2014.11.021
|
[14] |
Kryszkiewicz, M., 1998. Rough set approach to incomplete information systems. Inform. Sci., 112(1-4):39–49. http://dx.doi.org/10.1016/S0020-0255(98)10019-1
|
[15] |
Leung, Y., Fischer, M.M., Wu, W.Z.,
|
[16] |
Lin, S.H., Huang, C.C., Che, Z.X., 2015. Rule induction for hierarchical attributes using a roughsetfortheselection of agreen fleet. Appl. Soft Comput., 37:456–466. http://dx.doi.org/10.1016/j.asoc.2015.08.016
|
[17] |
Pawlak, Z., 1991. Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht & Boston. http://dx.doi.org/10.1007/978-94-011-3534-4
|
[18] |
Qian, Y.H., Liang, J.Y., Dang, C.Y., 2008. Interval ordered information systems. Comput. Math. Appl., 56(8):1994–2009. http://dx.doi.org/10.1016/j.camwa.2008.04.021
|
[19] |
Yang, X.B., Yu, D.J., Yang, J.Y.,
|
[20] |
Zhang, C.Y., Fu, H.Y., 2006. Similarity measures on three kinds of fuzzy sets. Patt. Recogn. Lett., 27(12):13071317. http://dx.doi.org/10.1016/j.patrec.2005.11.020
|
[21] |
Zhang, X.H., Dai, J.H., Yu, Y.C., 2015. On the union and intersection operations of rough sets based on various approximation spaces. Inform. Sci., 292:214–229. http://dx.doi.org/10.1016/j.ins.2014.09.007
|
[22] |
Zhang, X.H., Miao, D.Q., Liu, C.H.,
|
/
〈 | 〉 |