Attribute reduction in interval-valued information systems based on information entropies

Jian-hua DAI, Hu HU, Guo-jie ZHENG, Qing-hua HU, Hui-feng HAN, Hong SHI

PDF(361 KB)
PDF(361 KB)
Front. Inform. Technol. Electron. Eng ›› 2016, Vol. 17 ›› Issue (9) : 919-928. DOI: 10.1631/FITEE.1500447
Article
Article

Attribute reduction in interval-valued information systems based on information entropies

Author information +
History +

Abstract

Interval-valued data appear as a way to represent the uncertainty affecting the observed values. Dealing with interval-valued information systems is helpful to generalize the applications of rough set theory. Attribute reduction is a key issue in analysis of interval-valued data. Existing attribute reduction methods for single-valued data are unsuitable for interval-valued data. So far, there have been few studies on attribute reduction methods for interval-valued data. In this paper, we propose a framework for attribute reduction in interval-valued data from the viewpoint of information theory. Some information theory concepts, including entropy, conditional entropy, and joint entropy, are given in interval-valued information systems. Based on these concepts, we provide an information theory view for attribute reduction in interval-valued information systems. Consequently, attribute reduction algorithms are proposed. Experiments show that the proposed framework is effective for attribute reduction in interval-valued information systems.

Keywords

Rough set theory / Interval-valued data / Attribute reduction / Entropy

Cite this article

Download citation ▾
Jian-hua DAI, Hu HU, Guo-jie ZHENG, Qing-hua HU, Hui-feng HAN, Hong SHI. Attribute reduction in interval-valued information systems based on information entropies. Front. Inform. Technol. Electron. Eng, 2016, 17(9): 919‒928 https://doi.org/10.1631/FITEE.1500447

References

[1]
Billard, L., Douzal-Chouakria, A., Diday, E., 2008. Symbolic Principal Component for Interval-Valued Observations. Available from https://hal.archivesouvertes.fr/hal-00361053.
[2]
Bustince, H., Barrenechea, E., Pagola, M., 2006. Restricted equivalence functions. Fuzzy Sets Syst., 157(17):23332346. http://dx.doi.org/10.1016/j.fss.2006.03.018
[3]
Dai, J.H., 2008. Rough 3-valued algebras. Inform. Sci., 178(8):1986–1996. http://dx.doi.org/10.1016/j.ins.2007.11.011
[4]
Dai, J.H., Tian, H.W., 2013. Fuzzy rough set model for set-valued data. Fuzzy Sets Syst., 229:54–68. http://dx.doi.org/10.1016/j.fss.2013.03.005
[5]
Dai, J.H., Xu, Q., 2012. Approximations and uncertainty measures in incomplete information systems. Inform. Sci., 198:62–80. http://dx.doi.org/10.1016/j.ins.2012.02.032
[6]
Dai, J.H., Xu, Q., 2013. Attribute selection based on information gain ratio in fuzzy rough set theory with application to tumor classification. Appl. Soft Com-put., 13(1):211–221. http://dx.doi.org/10.1016/j.asoc.2012.07.029
[7]
Dai, J.H., Wang, W.T., Xu, Q., , 2012. Uncertainty measurement forinterval-valued decision systemsbased on extended conditional entropy. Knowl.-Based Syst., 27:443–450. http://dx.doi.org/10.1016/j.knosys.2011.10.013
[8]
Dai, J.H., Tian, H.W., Wang, W.T., , 2013a. Decision rule mining using classification consistency rate. Knowl.-Based Syst., 43:95–102. http://dx.doi.org/10.1016/j.knosys.2013.01.010
[9]
Dai, J.H., Wang, W.T., Mi, J.S., 2013b. Uncertainty measurement for interval-valued information systems. Inform. Sci., 251:63–78. http://dx.doi.org/10.1016/j.ins.2013.06.047
[10]
Dai, J.H., Wang, W.T., Xu, Q., 2013c. An uncertainty measureforincompletedecision tables andits applications. IEEE Trans. Cybern., 43(4):1277–1289. http://dx.doi.org/10.1109/TSMCB.2012.2228480
[11]
Galar, M., Fernandez, J., Beliakov, G., , 2011. Interval-valued fuzzy sets applied to stereo matching of color images. IEEETrans. ImageProcess., 20(7):1949–1961. http://dx.doi.org/10.1109/TIP.2011.2107525
[12]
Hedjazi, L., Aguilar-Martin, J., Le Lann, M.V., 2011. Similarity-margin based feature selection for symbolic interval data. Patt. Recogn. Lett., 32(4):578–585. http://dx.doi.org/10.1016/j.patrec.2010.11.018
[13]
Hu, Y.C., 2015. Flow-based tolerance rough sets for pattern classification. Appl. Soft Comput., 27:322–331. http://dx.doi.org/10.1016/j.asoc.2014.11.021
[14]
Kryszkiewicz, M., 1998. Rough set approach to incomplete information systems. Inform. Sci., 112(1-4):39–49. http://dx.doi.org/10.1016/S0020-0255(98)10019-1
[15]
Leung, Y., Fischer, M.M., Wu, W.Z., , 2008. A rough set approach for the discovery of classification rules in interval-valued information systems. Int. J. Approx. Reason., 47(2):233–246. http://dx.doi.org/10.1016/j.ijar.2007.05.001
[16]
Lin, S.H., Huang, C.C., Che, Z.X., 2015. Rule induction for hierarchical attributes using a roughsetfortheselection of agreen fleet. Appl. Soft Comput., 37:456–466. http://dx.doi.org/10.1016/j.asoc.2015.08.016
[17]
Pawlak, Z., 1991. Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht & Boston. http://dx.doi.org/10.1007/978-94-011-3534-4
[18]
Qian, Y.H., Liang, J.Y., Dang, C.Y., 2008. Interval ordered information systems. Comput. Math. Appl., 56(8):1994–2009. http://dx.doi.org/10.1016/j.camwa.2008.04.021
[19]
Yang, X.B., Yu, D.J., Yang, J.Y., , 2009. Dominance-based rough set approach to incomplete interval-valued information system. Data Knowl. Eng., 68(11):13311347. http://dx.doi.org/10.1016/j.datak.2009.07.007
[20]
Zhang, C.Y., Fu, H.Y., 2006. Similarity measures on three kinds of fuzzy sets. Patt. Recogn. Lett., 27(12):13071317. http://dx.doi.org/10.1016/j.patrec.2005.11.020
[21]
Zhang, X.H., Dai, J.H., Yu, Y.C., 2015. On the union and intersection operations of rough sets based on various approximation spaces. Inform. Sci., 292:214–229. http://dx.doi.org/10.1016/j.ins.2014.09.007
[22]
Zhang, X.H., Miao, D.Q., Liu, C.H., , 2016. Constructive methods of rough approximation operators and multigranulation rough sets. Knowl.-Based Syst., 91:114–125. http://dx.doi.org/10.1016/j.knosys.2015.09.036

RIGHTS & PERMISSIONS

2016 Zhejiang University and Springer-Verlag Berlin Heidelberg
PDF(361 KB)

Accesses

Citations

Detail

Sections
Recommended

/