Onmodeling of electrical cyber-physical systems considering cyber security<FootNote> Project supported by the National Basic Research Program (863) of China (No. 2015AA05002), the National Natural Science Foundation of China (No. 61471328), and the Science and Technology Project of State Grid, China (No. XXB17201400056) </FootNote>
Yi-nan WANG, Zhi-yun LIN, Xiao LIANG, Wen-yuan XU, Qiang YANG, Gang-feng YAN
Onmodeling of electrical cyber-physical systems considering cyber security<FootNote> Project supported by the National Basic Research Program (863) of China (No. 2015AA05002), the National Natural Science Foundation of China (No. 61471328), and the Science and Technology Project of State Grid, China (No. XXB17201400056) </FootNote>
This paper establishes a new framework for modeling electrical cyber-physical systems (ECPSs), integrating both power grids and communication networks. To model the communication network associated with a power transmission grid, we use a mesh network that considers the features of power transmission grids such as high-voltage levels, long-transmission distances, and equal importance of each node. Moreover, bidirectional links including data uploading channels and command downloading channels are assumed to connect every node in the communication network and a corresponding physical node in the transmission grid. Based on this model, the fragility of an ECPS is analyzed under various cyber attacks including denial-of-service (DoS) attacks, replay attacks, and false data injection attacks. Control strategies such as load shedding and relay protection are also verified using this model against these attacks.
Cyber-physical systems / Cyber attacks / Cascading failure analysis / Smart grid
[1] |
Baldick, R., Chowdhury, B., Dobson, I.,
|
[2] |
Bao, Z.J., Cao, Y.J., Wang, G.Z.,
|
[3] |
Bishop, M., 2002. Computer Security: Art and Science. Addison-Wesley Prefessional, USA.
|
[4] |
Buldyrev, S.V., Parshani, R., Paul, G.,
|
[5] |
Buldyrev, S.V., Shere, N.W., Cwilich, G.A., 2011. Interdependent networks with identical degrees of mutually dependent nodes. Phys. Rev. E, 83:016112. http://dx.doi.org/10.1103/PhysRevE.83.016112
|
[6] |
Chakrabarti, A., Manimaran, G., 2002. Internet infrastructure security: a taxonomy. IEEE Netw., 16(6):13–21. http://dx.doi.org/10.1109/MNET.2002.1081761
|
[7] |
Chen, P.Y., Cheng, S.M., Chen, K.C., 2012. Smart attacks in smart grid communication networks. IEEE Commun. Mag., 50(8):24–29. http://dx.doi.org/10.1109/MCOM.2012.6257523
|
[8] |
Dobson, I., Carreras, B.A., Lynch, V.E.,
|
[9] |
Gungor, V.C., Sahin, D., Kocak, T.,
|
[10] |
Hu, Y., Ksherim, B., Cohen, R.,
|
[11] |
Huang, T.E., Sun, H.B., Guo, Q.L.,
|
[12] |
Huang, X., Gao, J., Buldyrev, S.V.,
|
[13] |
Koç, Y., Warnier, M., Mieghem, P.V.,
|
[14] |
Liu, Y., Ning, P., Reiter, M.K., 2011. False data injection attacks against state estimation in electric power grids. ACM Trans. Inform. Syst. Secur., 14(1):13.1–13.33. http://dx.doi.org/10.1145/1952982.1952995
|
[15] |
Morris, R.G., Barthelemy, M., 2013. Interdependent networks: the fragility of control. Sci. Reports, 3:2764.1–2764.5. http://dx.doi.org/10.1038/srep02764
|
[16] |
Parandehgheibi, M., Modiano, E., Hay, D., 2014. Mitigating cascading failures in interdependent power grids and communication networks. Proc. IEEE Int. Conf. on Smart Grid Communications, p.242–247. http://dx.doi.org/10.1109/SmartGridComm.2014.7007653
|
[17] |
Parshani, R., Buldyrev, S.V., Havlin, S., 2010. Interdependent networks: reducing the coupling strength leads to a change from a first to second order percolation transition. Phys. Rev. Lett., 105:048701. http://dx.doi.org/10.1103/PhysRevLett.105.048701
|
[18] |
Pasqualetti, F., Dörfler, F., Bullo, F., 2013. Attack detection and identification in cyber-physical systems. IEEE Trans. Autom. Contr., 58(11):2715–2729. http://dx.doi.org/10.1109/TAC.2013.2266831
|
[19] |
Schneider, C.M., Yazdani, N., Araújo, N.A.M.,
|
[20] |
Shao, J., Buldyrev, S.V., Havlin, S.,
|
[21] |
Shin, D.H., Qian, D., Zhang, J., 2014. Cascading effects in interdependent networks. IEEE Netw., 28(4):82–87. http://dx.doi.org/10.1109/MNET.2014.6863136
|
[22] |
Stott, B., Jardim, J., Alsac, O., 2009. DC power flow revisited. IEEE Trans. Power Syst., 24(3):1290–1300. http://dx.doi.org/10.1109/TPWRS.2009.2021235
|
[23] |
Teixeira, A., Shames, I., Sandberg, H.,
|
[24] |
Teixeira, A., Sou, K.C., Sandberg, H.,
|
[25] |
Wang, S.Z., 2012. Power System Control and Dispatching Automation (2nd Ed.). China Electric Power Press, China (in Chinese).
|
[26] |
Wei, J., Kundur, D., Zourntos, T.,
|
[27] |
Yang, Q., Barria, J.A., Green, T.C., 2011. Communication infrastructures for distributed control of power distribution networks. IEEE Trans. Ind. Inform., 7(2):316–327. http://dx.doi.org/10.1109/TII.2011.2123903
|
[28] |
Zhao, F., Sun, H.B., Huang, T.E.,
|
/
〈 | 〉 |