Onmodeling of electrical cyber-physical systems considering cyber security<FootNote> Project supported by the National Basic Research Program (863) of China (No. 2015AA05002), the National Natural Science Foundation of China (No. 61471328), and the Science and Technology Project of State Grid, China (No. XXB17201400056) </FootNote>

Yi-nan WANG, Zhi-yun LIN, Xiao LIANG, Wen-yuan XU, Qiang YANG, Gang-feng YAN

PDF(447 KB)
PDF(447 KB)
Front. Inform. Technol. Electron. Eng ›› 2016, Vol. 17 ›› Issue (5) : 465-478. DOI: 10.1631/FITEE.1500446

Onmodeling of electrical cyber-physical systems considering cyber security<FootNote> Project supported by the National Basic Research Program (863) of China (No. 2015AA05002), the National Natural Science Foundation of China (No. 61471328), and the Science and Technology Project of State Grid, China (No. XXB17201400056) </FootNote>

Author information +
History +

Abstract

This paper establishes a new framework for modeling electrical cyber-physical systems (ECPSs), integrating both power grids and communication networks. To model the communication network associated with a power transmission grid, we use a mesh network that considers the features of power transmission grids such as high-voltage levels, long-transmission distances, and equal importance of each node. Moreover, bidirectional links including data uploading channels and command downloading channels are assumed to connect every node in the communication network and a corresponding physical node in the transmission grid. Based on this model, the fragility of an ECPS is analyzed under various cyber attacks including denial-of-service (DoS) attacks, replay attacks, and false data injection attacks. Control strategies such as load shedding and relay protection are also verified using this model against these attacks.

Keywords

Cyber-physical systems / Cyber attacks / Cascading failure analysis / Smart grid

Cite this article

Download citation ▾
Yi-nan WANG, Zhi-yun LIN, Xiao LIANG, Wen-yuan XU, Qiang YANG, Gang-feng YAN. Onmodeling of electrical cyber-physical systems considering cyber security<FootNote> Project supported by the National Basic Research Program (863) of China (No. 2015AA05002), the National Natural Science Foundation of China (No. 61471328), and the Science and Technology Project of State Grid, China (No. XXB17201400056) </FootNote>. Front. Inform. Technol. Electron. Eng, 2016, 17(5): 465‒478 https://doi.org/10.1631/FITEE.1500446

References

[1]
Baldick, R., Chowdhury, B., Dobson, I., , 2008. Initial review of methods for cascading failure analysis in electric power transmission systems. Proc. IEEE Power and Energy Society General Meeting, p.1–8. http://dx.doi.org/10.1109/PES.2008.4596430
[2]
Bao, Z.J., Cao, Y.J., Wang, G.Z., , 2009. Analysis of cascading failure in electric grid based on power flow entropy. Phys. Lett. A, 373(34):3032–3040. http://dx.doi.org/10.1016/j.physleta.2009.06.058
[3]
Bishop, M., 2002. Computer Security: Art and Science. Addison-Wesley Prefessional, USA.
[4]
Buldyrev, S.V., Parshani, R., Paul, G., , 2010. Catastrophic cascade of failures in interdependent networks. Nature, 464:1025–1028. http://dx.doi.org/10.1038/nature08932
[5]
Buldyrev, S.V., Shere, N.W., Cwilich, G.A., 2011. Interdependent networks with identical degrees of mutually dependent nodes. Phys. Rev. E, 83:016112. http://dx.doi.org/10.1103/PhysRevE.83.016112
[6]
Chakrabarti, A., Manimaran, G., 2002. Internet infrastructure security: a taxonomy. IEEE Netw., 16(6):13–21. http://dx.doi.org/10.1109/MNET.2002.1081761
[7]
Chen, P.Y., Cheng, S.M., Chen, K.C., 2012. Smart attacks in smart grid communication networks. IEEE Commun. Mag., 50(8):24–29. http://dx.doi.org/10.1109/MCOM.2012.6257523
[8]
Dobson, I., Carreras, B.A., Lynch, V.E., , 2001. An initial model for complex dynamics in electric power system blackouts. Proc. Hawaii Int. Conf. on System Sciences, p.1–9.
[9]
Gungor, V.C., Sahin, D., Kocak, T., , 2011. Smart grid technologies: communication technologies and standards. IEEE Trans. Ind. Inform., 7(4):529–539. http://dx.doi.org/10.1109/TII.2011.2166794
[10]
Hu, Y., Ksherim, B., Cohen, R., , 2011. Percolation in interdependent and interconnected networks: abrupt change from second- to first-order transitions. Phys. Rev. E, 84:066116. http://dx.doi.org/10.1103/PhysRevE.84.066116
[11]
Huang, T.E., Sun, H.B., Guo, Q.L., , 2015. Knowledge management and security early warning based on big simulation data in power grid operation. Power Syst. Technol., 39(11):3080–3087 (in Chinese).
[12]
Huang, X., Gao, J., Buldyrev, S.V., , 2011. Robustness of interdependent networks under targeted attack. Phys. Rev. E, 83:065101. http://dx.doi.org/10.1103/PhysRevE.83.065101
[13]
Koç, Y., Warnier, M., Mieghem, P.V., , 2014. The impact of the topology on cascading failures in a power grid model. Phys. A, 402:169–179. http://dx.doi.org/10.1016/j.physa.2014.01.056
[14]
Liu, Y., Ning, P., Reiter, M.K., 2011. False data injection attacks against state estimation in electric power grids. ACM Trans. Inform. Syst. Secur., 14(1):13.1–13.33. http://dx.doi.org/10.1145/1952982.1952995
[15]
Morris, R.G., Barthelemy, M., 2013. Interdependent networks: the fragility of control. Sci. Reports, 3:2764.1–2764.5. http://dx.doi.org/10.1038/srep02764
[16]
Parandehgheibi, M., Modiano, E., Hay, D., 2014. Mitigating cascading failures in interdependent power grids and communication networks. Proc. IEEE Int. Conf. on Smart Grid Communications, p.242–247. http://dx.doi.org/10.1109/SmartGridComm.2014.7007653
[17]
Parshani, R., Buldyrev, S.V., Havlin, S., 2010. Interdependent networks: reducing the coupling strength leads to a change from a first to second order percolation transition. Phys. Rev. Lett., 105:048701. http://dx.doi.org/10.1103/PhysRevLett.105.048701
[18]
Pasqualetti, F., Dörfler, F., Bullo, F., 2013. Attack detection and identification in cyber-physical systems. IEEE Trans. Autom. Contr., 58(11):2715–2729. http://dx.doi.org/10.1109/TAC.2013.2266831
[19]
Schneider, C.M., Yazdani, N., Araújo, N.A.M., , 2013. Towards designing robust coupled networks. Sci. Reports, 3:1969.1–1969.7. http://dx.doi.org/10.1038/srep01969
[20]
Shao, J., Buldyrev, S.V., Havlin, S., , 2011. Cascade of failures in coupled network systems with multiple support-dependence relations. Phys. Rev. E, 83:036116. http://dx.doi.org/10.1103/PhysRevE.83.036116
[21]
Shin, D.H., Qian, D., Zhang, J., 2014. Cascading effects in interdependent networks. IEEE Netw., 28(4):82–87. http://dx.doi.org/10.1109/MNET.2014.6863136
[22]
Stott, B., Jardim, J., Alsac, O., 2009. DC power flow revisited. IEEE Trans. Power Syst., 24(3):1290–1300. http://dx.doi.org/10.1109/TPWRS.2009.2021235
[23]
Teixeira, A., Shames, I., Sandberg, H., , 2015a. A secure control framework for resource-limited adversaries. Automatica, 51:135–148. http://dx.doi.org/10.1016/j.automatica.2014.10.067
[24]
Teixeira, A., Sou, K.C., Sandberg, H., , 2015b. Secure control systems: a quantitative risk management approach. IEEE Contr. Syst., 35(1):24–45.http://dx.doi.org/10.1109/MCS.2014.2364709
[25]
Wang, S.Z., 2012. Power System Control and Dispatching Automation (2nd Ed.). China Electric Power Press, China (in Chinese).
[26]
Wei, J., Kundur, D., Zourntos, T., , 2014. A flockingbased paradigm for hierarchical cyber-physical smart grid modeling and control. IEEE Trans. Smart Grid, 5(6):2687–2700. http://dx.doi.org/10.1109/TSG.2014.2341211
[27]
Yang, Q., Barria, J.A., Green, T.C., 2011. Communication infrastructures for distributed control of power distribution networks. IEEE Trans. Ind. Inform., 7(2):316–327. http://dx.doi.org/10.1109/TII.2011.2123903
[28]
Zhao, F., Sun, H.B., Huang, T.E., , 2015. Design and engineering application of automatic discovery system for critical flowgates and security operation rules in power grids. Autom. Elect. Power Syst., 39(1):117–123 (in Chinese).

RIGHTS & PERMISSIONS

2016 Zhejiang University and Springer-Verlag Berlin Heidelberg
PDF(447 KB)

Accesses

Citations

Detail

Sections
Recommended

/