Anenhanced mixedmodulated Lagrange explicit time delay estimator with noisy input

Wei XIA, Ju-lei ZHU, Wen-ying JIANG, Ling-feng ZHU

PDF(649 KB)
PDF(649 KB)
Front. Inform. Technol. Electron. Eng ›› 2016, Vol. 17 ›› Issue (10) : 1067-1073. DOI: 10.1631/FITEE.1500417
Article
Article

Anenhanced mixedmodulated Lagrange explicit time delay estimator with noisy input

Author information +
History +

Abstract

The mixed modulated Lagrange explicit time delay estimation (MMLETDE) algorithm provides an efficient time delay estimation between narrowband or sinusoidal signals. However, it does not explicitly consider the additive measurement noise at the input, which actually exists in practice. Aiming at this issue, an enhanced MMLETDE algorithm is proposed for noisy inputs based on the unbiased impulse response estimation technique, assuming that the noise power ratio is known a priori. Simulation results show that for narrowband signals or sinusoids over a wide frequency range, the proposed algorithm with a small filter order performs well in moderate and high noise scenarios.

Keywords

Time delay estimation / Adaptive filter / Noisy input / Modulated Lagrange / Unbiased impulse response estimation

Cite this article

Download citation ▾
Wei XIA, Ju-lei ZHU, Wen-ying JIANG, Ling-feng ZHU. Anenhanced mixedmodulated Lagrange explicit time delay estimator with noisy input. Front. Inform. Technol. Electron. Eng, 2016, 17(10): 1067‒1073 https://doi.org/10.1631/FITEE.1500417

References

[1]
Benesty, J., Chen, J., Huang, Y., 2004. Time-delay estimation via linear interpolation and cross correlation. IEEE Trans. Speech Audio Process., 12(5):509–519. http://dx.doi.org/10.1109/TSA.2004.833008
[2]
Carter, G.C., 1987. Coherence and time delay estimation. Proc. IEEE, 75(2):236-255. http://dx.doi.org/10.1109/PROC.1987.13723
[3]
Chakraborty, M., So, H.C., 2007. New adaptive algorithm for delay estimation of sinusoidal signals. IEEE Signal Process. Lett., 14(12):984–987. http://dx.doi.org/10.1109/LSP.2007.908003
[4]
Chen, S., Ho, K.C., 2013. Achieving asymptotic efficient performance for squared range and squared range difference localizations. IEEE Trans. Signal Process., 61(11):2836–2849. http://dx.doi.org/10.1109/TSP.2013.2254479
[5]
Cheng, Z., Tjhung, T.T., 2003. A new time delay estimator based on ETDE. IEEE Trans. Signal Process., 51(7):1859–1869. http://dx.doi.org/10.1109/TSP.2003.812735
[6]
Dooley, S.R., Nandi, A.K., 1999. Adaptive subsample time delay estimation using Lagrange interpolators. IEEE Signal Process. Lett., 6(3):65–67. http://dx.doi.org/10.1109/97.744626
[7]
Jamalabdollahi, M., Zekavat, S., 2015. Time of arrival estimation in wireless sensor networks via OFDMA. Vehicular Technology Conf., p.1–6. http://dx.doi.org/10.1109/VTCFall.2015.7391177
[8]
Knapp, C.H., Carter, G.C., 1976. The generalized correlation method for estimation of time delay. IEEE Trans. Acoust. Speech Signal Process., 24(4):320–327. http://dx.doi.org/10.1109/TASSP.1976.1162830
[9]
Li, X., Ma, X., Yan, S., , 2012. Super-resolution time delay estimation for narrowband signal. IEEE Proc. Radar Sonar Navig., 6(8):781–787. http://dx.doi.org/10.1049/iet-rsn.2012.0002
[10]
Patwari, N., Ash, J.N., Kyperountas, S., , 2005. Locating the nodes: cooperative localization in wireless sensor networks. IEEE Signal Process. Mag., 22(4):54–69. http://dx.doi.org/10.1109/MSP.2005.1458287
[11]
Piersol, A.G., 1981. Time delay estimation using phase data. IEEE Trans. Acoust. Speech Signal Process., 29(3):471–477. http://dx.doi.org/10.1109/TASSP.1981.1163555
[12]
Regalia, P.A., 1994. An unbiased equation error identifier and reduced-order approximations. IEEE Trans. Signal Process., 42(6):1397–1412. http://dx.doi.org/10.1109/78.286956
[13]
Sadler, B., Kozick, R., 2006. A survey of time delay estimation performance bounds. IEEE Workshop on Sensor Array and Multichannel Processing, p.282–288. http://dx.doi.org/10.1109/SAM.2006.1706138
[14]
So, H.C., 2001. LMS based algorithm for unbiased FIR filtering with noisy measurements. Electron. Lett., 37(23):1418–1420. http://dx.doi.org/10.1049/el:20010955
[15]
So, H.C., 2002. Noisy input-output system identification approach for time delay estimation. Signal Process., 82(10):1471–1475. http://dx.doi.org/10.1016/S0165-1684(02)00289-X
[16]
So, H.C., Ching, P.C., 2001. Comparative study of five LMS-based adaptive time delay estimators. IEEE Proc. Radar Sonar Navig., 148(1):9–15. http://dx.doi.org/10.1049/ip-rsn:20010145
[17]
So, H.C., Ching, P.C., Chan, Y.T., 1994. A new algorithm for explicit adaptation of time delay. IEEE Trans. Signal Process., 42(7):1816–1820. http://dx.doi.org/10.1109/78.298289
[18]
So, H.C., Ching, P.C., Chan, Y.T., 1995. An improvement to the explicit time delay estimator. Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, p.3151–3154. http://dx.doi.org/10.1109/ICASSP.1995.479553
[19]
Widrow, B., Steams, S.D., 1985. Adaptive Signal Processing. Prentice-Hall, Inc., Englewood Cliffs, NJ,
[20]
Zhong, S., Xia, W., Song, J.X., , 2013. Super-resolution time delay estimation in multipath environments using normalized cross spectrum. Int. Conf. on Communications, Circuits and Systems, p.288–291. http://dx.doi.org/10.1109/ICCCAS.2013.6765235
[21]
Zhong, S., Xia, W., He, Z.S., , 2014. Time delay estimation in the presence of clock frequency error. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.2977–2981. http://dx.doi.org/10.1109/ICASSP.2014.6854146
[22]
Zhong, S., Xia, W., He, Z.S., 2015. Multipath time delay estimation based on Gibbs sampling under incoherent reception environment. IEICE Trans. Fundam. Electron. Commun. Comput. Sci., E98.A(6):1300–1304. http://dx.doi.org/10.1587/transfun.E98.A.1300

RIGHTS & PERMISSIONS

2016 Zhejiang University and Springer-Verlag Berlin Heidelberg
PDF(649 KB)

Accesses

Citations

Detail

Sections
Recommended

/