
A space-saving steering method for underwater gliders in lake monitoring
Yu-shi ZHU, Can-jun YANG, Shi-jun WU, Qing LI, Xiao-le XU
Front. Inform. Technol. Electron. Eng ›› 2017, Vol. 18 ›› Issue (4) : 485-497.
A space-saving steering method for underwater gliders in lake monitoring
An increasing number of underwater gliders have been applied to lake monitoring. Lakes have a limited vertical space. Therefore, good space-saving capacity is required for underwater gliders to enlarge the spacing between monitoring waypoints. This paper presents a space-saving steering method under a small pitch angle (SPA) for appearance-fixed underwater gliders. Steering under an SPA increases the steering angle in per unit vertical space. An amended hydrodynamic model for both small and large attack angles is presented to help analyze the steering process. Analysis is conducted to find the optimal parameters of net buoyancy and roll angle for steering under an SPA. A lake trial with a prototype tiny underwater glider (TUG) is conducted to inspect the applicability of the presented model. The trial results show that steering under an SPA saves vertical space, unlike that under a large pitch angle. Simulation results of steering are consistent with the trial results. In addition, multiple-waypoint trial shows that monitoring with steering under an SPA covers a larger horizontal displacement than that without steering.
Underwater glider / Lake monitoring / Space-saving / Steering method / Small pitch angle (SPA) / Hydrodynamics
[1] |
Ahmadzadeh,S.R., Kormushev, P., Caldwell,D.G. , 2014. Multi-objective reinforcement learning for AUV thruster failure recovery. IEEE Symp. on Adaptive Dynamic Programming and Reinforcement Learning, p.1–8. http://dx.doi.org/10.1109/ADPRL.2014.7010621
|
[2] |
Austin,J., 2013a. Observations of near-inertial energy in Lake Superior. Limnol. Ocean., 58(2):715–728. http://dx.doi.org/10.4319/lo.2013.58.2.0715
|
[3] |
Austin,J., 2013b. The potential for autonomous underwater gliders in large lake research. J. Great Lake Res., 39(Supplement 1):8–13. http://dx.doi.org/10.1016/j.jglr.2013.01.004
|
[4] |
Bardyshev,V.I., 2004. Testing underwater bottom-moored antenna arrays in the sea and in a man-made lake. Acoust. Phys., 50(6):641–646. http://dx.doi.org/10.1134/1.1825092
|
[5] |
Caffaz,A., Caiti, A., Casalino,G. ,
|
[6] |
Cao,J.J., Cao,J.L., Yao,B.H.,
|
[7] |
Chen,Y., Lu,C.J., Guo,J.H., 2010. Numerical study of the cavitating flows over underwater vehicle with large angle of attack. J. Hydrodyn., 22(5):893–898. http://dx.doi.org/10.1016/S1001-6058(10)60048-0
|
[8] |
Denkenberger,J.S., Driscoll, C.T., Effler,S.W. ,
|
[9] |
Fan,S., Woolsey, C.A., 2014. Dynamics of underwater gliders in currents. Ocean Eng., 84:249–258. http://dx.doi.org/10.1016/j.oceaneng.2014.03.024
|
[10] |
Geisbert,J.S., 2005. Underwater Gliders: Dynamics, Control and Design. PhD Thesis, Princeton University, Princeton, USA.
|
[11] |
Geisbert,J.S., 2007. Hydrodynamic modeling for Autonomous Underwater Vehicles Using Computational and Semi-Empirical Methods. MS Thesis, Virginia Polytechnic Institute and State University, Blacksburg, USA.
|
[12] |
He,R., Wooller, M.J., Pohlman,J.W. ,
|
[13] |
Hussain,N.A.A., Arshad, M.R., Mohd-Mokhtar,R. , 2011. Underwater glider modelling and analysis for net buoyancy, depth and pitch angle control. Ocean Eng., 38(16): 1782–1791. http://dx.doi.org/10.1016/j.oceaneng.2011.09.001
|
[14] |
Isa,K., Arshad, M.R., 2011. Motion simulation for propellerdriven USM underwater glider with controllable wings and rudder. 2nd Int. Conf. on Instrumentation Control and Automation, p.316–321. http://dx.doi.org/10.1109/ICA.2011.6130179
|
[15] |
Isa,K., Arshad, M.R., Ishak,S. , 2014. A hybrid-driven underwater glider model, hydrodynamics estimation, and an analysis of the motion control. Ocean Eng., 81:111–129. http://dx.doi.org/10.1016/j.oceaneng.2014.02.002
|
[16] |
Ivanov,A.V., Gladkochub, D.P., Déverchère, J.,
|
[17] |
Jones,C., Allsup, B., DeCollibus,C. , 2014. Slocum glider: expanding our understanding of the oceans. OCEANS, p.1–10. http://dx.doi.org/10.1109/OCEANS.2014.7003260
|
[18] |
Leonard,N.E., Paley, D.A., Davis,R.E. ,
|
[19] |
Li,Y., Gal,G., Makler-Pick,V. ,
|
[20] |
Lim,D.S.S., Brady, A.L., Abercromby,A.F. ,
|
[21] |
Mahmoudian,N., Geisbert, J., Woolsey,C. , 2010. Approximate analytical turning conditions for underwater gliders: implications for motion control and path planning. IEEE J. Ocean. Eng., 35(1):131–143. http://dx.doi.org/10.1109/JOE.2009.2039655
|
[22] |
Peng,S.L., Yang,C.J., Fan,S.S.,
|
[23] |
Suberg,L., Wynn,R.B., van der Kooij,J. ,
|
[24] |
Wang,C.T., Yu,J.C., Wu,L.H.,
|
[25] |
Wang,L.F., Yang,L.Y., Kong,L.H.,
|
[26] |
Wang,Y.H., Zhang, H.W., Wang,S.X. , 2009. Trajectory control strategies for the underwater glider. Int. Conf. on Measuring Technology and Mechatronics Automation, p.918–921. http://dx.doi.org/10.1109/ICMTMA.2009.617
|
[27] |
Weng,Y., Yang,H., He,J.Y.,
|
[28] |
Yang,C.J., Peng,S.L., Fan,S.S., 2014. Performance and stability analysis for ZJU glider. Mar. Technol. Soc. J., 48(3):88–103. http://dx.doi.org/10.4031/MTSJ.48.3.6
|
[29] |
Zhang,F.T., Zhang, F.M., Tan,X.B. , 2014. Tail-enabled spiraling maneuver for gliding robotic fish. J. Dynam. Syst. Meas. Contr., 136(4):041028. http://dx.doi.org/10.1115/1.4026965
|
[30] |
Zhang,S.W., Yu,J.C., Zhang,A.Q. ,
|
/
〈 |
|
〉 |