A space-saving steering method for underwater gliders in lake monitoring

Yu-shi ZHU, Can-jun YANG, Shi-jun WU, Qing LI, Xiao-le XU

Front. Inform. Technol. Electron. Eng ›› 2017, Vol. 18 ›› Issue (4) : 485-497.

PDF(1333 KB)
PDF(1333 KB)
Front. Inform. Technol. Electron. Eng ›› 2017, Vol. 18 ›› Issue (4) : 485-497. DOI: 10.1631/FITEE.1500399
Article
Article

A space-saving steering method for underwater gliders in lake monitoring

Author information +
History +

Abstract

An increasing number of underwater gliders have been applied to lake monitoring. Lakes have a limited vertical space. Therefore, good space-saving capacity is required for underwater gliders to enlarge the spacing between monitoring waypoints. This paper presents a space-saving steering method under a small pitch angle (SPA) for appearance-fixed underwater gliders. Steering under an SPA increases the steering angle in per unit vertical space. An amended hydrodynamic model for both small and large attack angles is presented to help analyze the steering process. Analysis is conducted to find the optimal parameters of net buoyancy and roll angle for steering under an SPA. A lake trial with a prototype tiny underwater glider (TUG) is conducted to inspect the applicability of the presented model. The trial results show that steering under an SPA saves vertical space, unlike that under a large pitch angle. Simulation results of steering are consistent with the trial results. In addition, multiple-waypoint trial shows that monitoring with steering under an SPA covers a larger horizontal displacement than that without steering.

Keywords

Underwater glider / Lake monitoring / Space-saving / Steering method / Small pitch angle (SPA) / Hydrodynamics

Cite this article

Download citation ▾
Yu-shi ZHU, Can-jun YANG, Shi-jun WU, Qing LI, Xiao-le XU. A space-saving steering method for underwater gliders in lake monitoring. Front. Inform. Technol. Electron. Eng, 2017, 18(4): 485‒497 https://doi.org/10.1631/FITEE.1500399

References

[1]
Ahmadzadeh,S.R., Kormushev, P., Caldwell,D.G. , 2014. Multi-objective reinforcement learning for AUV thruster failure recovery. IEEE Symp. on Adaptive Dynamic Programming and Reinforcement Learning, p.1–8. http://dx.doi.org/10.1109/ADPRL.2014.7010621
[2]
Austin,J., 2013a. Observations of near-inertial energy in Lake Superior. Limnol. Ocean., 58(2):715–728. http://dx.doi.org/10.4319/lo.2013.58.2.0715
[3]
Austin,J., 2013b. The potential for autonomous underwater gliders in large lake research. J. Great Lake Res., 39(Supplement 1):8–13. http://dx.doi.org/10.1016/j.jglr.2013.01.004
[4]
Bardyshev,V.I., 2004. Testing underwater bottom-moored antenna arrays in the sea and in a man-made lake. Acoust. Phys., 50(6):641–646. http://dx.doi.org/10.1134/1.1825092
[5]
Caffaz,A., Caiti, A., Casalino,G. , , 2010. The hybrid glider/AUV folaga. IEEE Robot. Autom. Mag., 17(1): 31–44. http://dx.doi.org/10.1109/MRA.2010.935791
[6]
Cao,J.J., Cao,J.L., Yao,B.H., , 2015. Three dimensional model, hydrodynamics analysis and motion simulation of an underwater glider. OCEANS, p.1–8. http://dx.doi.org/10.1109/OCEANS-Genova.2015.7271365
[7]
Chen,Y., Lu,C.J., Guo,J.H., 2010. Numerical study of the cavitating flows over underwater vehicle with large angle of attack. J. Hydrodyn., 22(5):893–898. http://dx.doi.org/10.1016/S1001-6058(10)60048-0
[8]
Denkenberger,J.S., Driscoll, C.T., Effler,S.W. , , 2007. Comparison of an urban lake targeted for rehabilitation and a reference lake based on robotic monitoring. Lake Reserv. Manag., 23(1):11–26. http://dx.doi.org/10.1080/07438140709353906
[9]
Fan,S., Woolsey, C.A., 2014. Dynamics of underwater gliders in currents. Ocean Eng., 84:249–258. http://dx.doi.org/10.1016/j.oceaneng.2014.03.024
[10]
Geisbert,J.S., 2005. Underwater Gliders: Dynamics, Control and Design. PhD Thesis, Princeton University, Princeton, USA.
[11]
Geisbert,J.S., 2007. Hydrodynamic modeling for Autonomous Underwater Vehicles Using Computational and Semi-Empirical Methods. MS Thesis, Virginia Polytechnic Institute and State University, Blacksburg, USA.
[12]
He,R., Wooller, M.J., Pohlman,J.W. , , 2012. Diversity of active aerobic methanotrophs along depth profiles of Arctic and Subarctic lake water column and sediments. ISME J., 6(10):1937–1948. http://dx.doi.org/10.1038/ismej.2012.34
[13]
Hussain,N.A.A., Arshad, M.R., Mohd-Mokhtar,R. , 2011. Underwater glider modelling and analysis for net buoyancy, depth and pitch angle control. Ocean Eng., 38(16): 1782–1791. http://dx.doi.org/10.1016/j.oceaneng.2011.09.001
[14]
Isa,K., Arshad, M.R., 2011. Motion simulation for propellerdriven USM underwater glider with controllable wings and rudder. 2nd Int. Conf. on Instrumentation Control and Automation, p.316–321. http://dx.doi.org/10.1109/ICA.2011.6130179
[15]
Isa,K., Arshad, M.R., Ishak,S. , 2014. A hybrid-driven underwater glider model, hydrodynamics estimation, and an analysis of the motion control. Ocean Eng., 81:111–129. http://dx.doi.org/10.1016/j.oceaneng.2014.02.002
[16]
Ivanov,A.V., Gladkochub, D.P., Déverchère, J., , 2013. Introduction to special issue: geology of the Lake Baikal region. J. Asian Earth Sci., 62:1–3. http://dx.doi.org/10.1016/j.jseaes.2012.12.010
[17]
Jones,C., Allsup, B., DeCollibus,C. , 2014. Slocum glider: expanding our understanding of the oceans. OCEANS, p.1–10. http://dx.doi.org/10.1109/OCEANS.2014.7003260
[18]
Leonard,N.E., Paley, D.A., Davis,R.E. , , 2010. Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in Monterey Bay. J. Field Rob., 27(6):718–740. http://dx.doi.org/10.1002/rob.20366
[19]
Li,Y., Gal,G., Makler-Pick,V. , , 2014. Examination of the role of the microbial loop in regulating lake nutrient stoichiometry and phytoplankton dynamics. Biogeosciences, 11(11):2939–2960. http://dx.doi.org/10.5194/bg-11-2939-2014
[20]
Lim,D.S.S., Brady, A.L., Abercromby,A.F. , , 2011. A historical overview of the pavilion lake research project—analog science and exploration in an underwater environment. GSA Spec. Papers, 483:85–116. http://dx.doi.org/10.1130/2011.2483(07)
[21]
Mahmoudian,N., Geisbert, J., Woolsey,C. , 2010. Approximate analytical turning conditions for underwater gliders: implications for motion control and path planning. IEEE J. Ocean. Eng., 35(1):131–143. http://dx.doi.org/10.1109/JOE.2009.2039655
[22]
Peng,S.L., Yang,C.J., Fan,S.S., , 2014. Hybrid underwater glider for underwater docking: modeling and performance evaluation. Mar. Technol. Soc. J., 48(6): 112–124. http://dx.doi.org/10.4031/MTSJ.48.6.5
[23]
Suberg,L., Wynn,R.B., van der Kooij,J. , , 2014. Assessing the potential of autonomous submarine gliders for ecosystem monitoring across multiple trophic levels (plankton to cetaceans) and pollutants in shallow shelf seas. J. Meth. Ocean., 10:70–89. http://dx.doi.org/10.1016/j.mio.2014.06.002
[24]
Wang,C.T., Yu,J.C., Wu,L.H., , 2007. Research on movement mechanism simulation and experiment of underwater glider. Ocean Eng., 25(1):64–69. http://dx.doi.org/10.16483/j.issn.1005-9865.2007.01.010
[25]
Wang,L.F., Yang,L.Y., Kong,L.H., , 2014. Spatial distribution, source identification and pollution assessment of metal content in the surface sediments of Nansi Lake, China. J. Geochem. Exp., 140:87–95. http://dx.doi.org/10.1016/j.gexplo.2014.02.008
[26]
Wang,Y.H., Zhang, H.W., Wang,S.X. , 2009. Trajectory control strategies for the underwater glider. Int. Conf. on Measuring Technology and Mechatronics Automation, p.918–921. http://dx.doi.org/10.1109/ICMTMA.2009.617
[27]
Weng,Y., Yang,H., He,J.Y., , 2015. Microstructure measurement form an underwater glider: motion analysis and experimental results. OCEANS, p.1–5. http://dx.doi.org/10.1109/OCEANS-Genova.2015.7271488
[28]
Yang,C.J., Peng,S.L., Fan,S.S., 2014. Performance and stability analysis for ZJU glider. Mar. Technol. Soc. J., 48(3):88–103. http://dx.doi.org/10.4031/MTSJ.48.3.6
[29]
Zhang,F.T., Zhang, F.M., Tan,X.B. , 2014. Tail-enabled spiraling maneuver for gliding robotic fish. J. Dynam. Syst. Meas. Contr., 136(4):041028. http://dx.doi.org/10.1115/1.4026965
[30]
Zhang,S.W., Yu,J.C., Zhang,A.Q. , , 2013. Spiraling motion of underwater gliders: modeling, analysis, and experimental results. Ocean Eng., 60:1–13. http://dx.doi.org/10.1016/j.oceaneng.2012.12.023

RIGHTS & PERMISSIONS

2017 Zhejiang University and Springer-Verlag Berlin Heidelberg
PDF(1333 KB)

Accesses

Citations

Detail

Sections
Recommended

/