基于ARIMA和Kalman滤波的道路交通状态实时预测

东伟 徐, 永东 王, 利民 贾, 勇 秦, 宏辉 董

PDF(1540 KB)
PDF(1540 KB)
Front. Inform. Technol. Electron. Eng ›› 2017, Vol. 18 ›› Issue (2) : 287-302. DOI: 10.1631/FITEE.1500381
Article
Article

基于ARIMA和Kalman滤波的道路交通状态实时预测

Author information +
History +

Abstract

道路交通流预测不仅可以为出行者提供实时有效的信息,而且可以帮助他们选择最佳路径,减少出行时间,实现道路交通路径诱导,缓解交通拥堵。本文提出了一种基于ARIMA模型和Kalman滤波算法的道路交通流预测方法。首先,基于道路交通历史数据建立时间序列的ARIMA模型。其次,结合ARIMA模型和Kalman滤波法构建道路交通预测算法,获取Kalman滤波的测量方程和更新方程。然后,基于历史道路交通数据进行算法的参数设定。最后,以北京的四条路段作为案例,对所提出的方法进行了分析。实验结果表明,基于ARIMA模型和Kalman滤波的实时道路交通状态预测方法是可行的,并且可以获得很高的精度。

Keywords

ARIMA模型 / Kalman滤波 / 建模 / 训练 / 预测

Cite this article

Download citation ▾
东伟 徐, 永东 王, 利民 贾, 勇 秦, 宏辉 董. 基于ARIMA和Kalman滤波的道路交通状态实时预测. Front. Inform. Technol. Electron. Eng, 2017, 18(2): 287‒302 https://doi.org/10.1631/FITEE.1500381

References

[1]
Brockwell, P.J., Davis, R.A., 2006. ARMA models. In: Casella, G., Fienberg, S., Olkin, I. (Eds.), Introduction to Time Series and Forecasting. Springer Science & Business Media, Berlin, Germany, p.83–100.
[2]
Chang, T.H., Chueh, C.H., Yang, L.K., 2011. Dynamic traffic prediction for insufficient data roadways via automatic control theories. Contr. Eng. Pract., 19(12):1479–1489. http://dx.doi.org/10.1016/j.conengprac.2011.08.007
[3]
Chen, B.K., Xie, Y.B., Tong, W., , 2012. A comprehensive study of advanced information feedbacks in real-time intelligent traffic systems. Phys. A, 91(8):2730-2739. http://dx.doi.org/10.1016/j.physa.2011.12.032
[4]
Chen, C.Y., Hu, J.M., Meng, Q., , 2011. Short-time traffic flow prediction with ARIMA-GARCH model. IEEE Intelligent Vehicles Symp., p.607–612. http://dx.doi.org/10.1109/IVS.2011.5940418
[5]
Diebold, F.X., Mariano, R.S., 1995. Comparing predictive accuracy. J. Bus. Econ. Stat., 13(3):134–144. http://dx.doi.org/10.1198/073500102753410444
[6]
Dong, C.F., Ma, X., Wang, G.W., , 2009. Prediction feedback in intelligent traffic systems. Phys., 388(21): 4651–4657. http://dx.doi.org/10.1016/j.physa.2009.07.018
[7]
Dong, C.F., Ma, X., Wang, B.H., 2010. Weighted congestion coefficient feedback in intelligent transportation systems. Phys. Lett. A, 374(11):1326–1331. http://dx.doi.org/10.1016/j.physleta.2010.01.011
[8]
Durbin, J., Koopman, S.J., 2012. Time Series Analysis by State Space Methods. Oxford University Press, London, UK.
[9]
Guo, J.H., Huang, W., Williams, B.M., 2014. Adaptive Kal-man filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification. Transp. Res. Part C, 43:50–64. http://dx.doi.org/10.1016/j.trc.2014.02.006
[10]
Hoong, P.K., Tan, I.K.T., Chien, O.K., , 2012. Road traffic prediction using Bayesian networks. IET Int. Conf. on Wireless Communications and Applications, p.1–5. http://dx.doi.org/10.1049/cp.2012.2098
[11]
Kirchgässner, G., Wolters, J., Hassler, U., 2012. Introduction to Modern Time Series Analysis. Springer Science & Business Media, Berlin, Germany.
[12]
Kumar, K., Parida, M., Katiyar, V.K., 2013. Short term traffic flow prediction for a non urban highway using artificial neural network. Proc.-Soc. Behav. Sci., 104:755–764. http://dx.doi.org/10.1016/j.sbspro.2013.11.170
[13]
Lin, L., Li, Y., Sadek, A., 2013. A k nearest neighbor based local linear wavelet neural network model for online short-term traffic volume prediction. Proc.-Soc. Behav. Sci., 96:2066–2077. http://dx.doi.org/10.1016/j.sbspro.2013.08.223
[14]
Liu, H., Tian, H.Q., Li, Y.F., 2012. Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction. Appl. Energy, 98:415–424. http://dx.doi.org/10.1016/j.apenergy.2012.04.001
[15]
Liu, J.Y., Wang, W.D., Gong, X.Y., , 2012. A hybrid model based on Kalman filter and neutral network for traffic prediction. IEEE 2nd Int. Conf. on Cloud Compu-ting and Intelligent Systems, p.533–536. http://dx.doi.org/10.1109/CCIS.2012.6664231
[16]
Liu, X.L., Jia, P., Wu, S.H., , 2011. Short-term traffic flow forecasting based on multi-dimensional parameters. J. Transp. Syst. Eng. Inform. Technol., 11(4):140–146 (in Chinese).
[17]
Lv, L., Chen, M., Liu, Y., , 2015. A plane moving average algorithm for short-term traffic flow prediction. In: Cau, T., Lim, E.P., Zhou, Z.H., (Eds.), Advances in Knowledge Discovery and Data Mining. Springer Int. Publishing, Cham, Switzerland, p.357–369. http://dx.doi.org/10.1007/978-3-319-18032-8_28
[18]
Ma, T., Zhou, Z., Abdulhai, B., 2015. Nonlinear multivariate time–space threshold vector error correction model for short term traffic state prediction. Transp. Res. Part B, 76:27–47. http://dx.doi.org/10.1016/j.trb.2015.02.008
[19]
Ma, X.L., Tao, Z.M., Wang, Y.H., , 2015. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transp. Res. Part C, 54:187–197. http://dx.doi.org/10.1016/j.trc.2015.03.014
[20]
Min, W., Wynter, L., 2011. Real-time road traffic prediction with spatio-temporal correlations. Transp. Res. Part C, 19(4):606–616. http://dx.doi.org/10.1016/j.trc.2010.10.002
[21]
Moretti, F., Pizzuti, S., Panzieri, S., , 2015. Urban traffic flow forecasting through statistical and neural network bagging ensemble hybrid modeling. Neurocomputing, 167:3–7. http://dx.doi.org/10.1016/j.neucom.2014.08.100
[22]
Ojeda, L.L., Kibangou, A.Y., de Wit, C.C., 2013. Adaptive Kalman filtering for multi-step ahead traffic flow predic-tion. IEEE American Control Conf., p.4724–4729. http://dx.doi.org/10.1109/ACC.2013.6580568
[23]
Pan, T.L., Sumalee, A., Zhong, R.X., , 2013. Short-term traffic state prediction based on temporal–spatial correla-tion. IEEE Trans. Intell. Transp. Syst., 14(3):1242–1254. http://dx.doi.org/10.1109/TITS.2013.2258916
[24]
Park, J., Li, D., Murphey, Y.L., , 2011. Real time vehicle speed prediction using a neural network traffic model. IEEE Int. Joint Conf. on. Neural Networks, p.2991–2996. http://dx.doi.org/10.1109/IJCNN.2011.6033614
[25]
Qi, Y., Ishak, S., 2014. A hidden Markov model for short term prediction of traffic conditions on freeways. Transp. Res. Part C, 43:95–111. http://dx.doi.org/10.1016/j.trc.2014.02.007
[26]
Smith, B.L., Williams, B.M., Oswald, R.K., 2002. Comparison of parametric and nonparametric models for traffic flow forecasting. Transp. Res. Part C, 10(4):303–321. http://dx.doi.org/10.1016/S0968-090X(02)00009-8
[27]
Sommer, M., Tomforde, S., Haehner, J., 2015. A systematic study on forecasting of traffic flows with artificial neural networks. Proc. 28th Int. Conf. on. Architecture of Computing Systems, p.1–8.
[28]
Vlahogianni, E.I., Karlaftis, M.G., Golias, J.C., 2005. Opti-mized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach. Transp. Res. Part C, 13(3):211–234. http://dx.doi.org/10.1016/j.trc.2005.04.007
[29]
Wang, J., Shi, Q.X., 2013. Short-term traffic speed forecasting hybrid model based on chaos–wavelet analysis-support vector machine theory. Transp. Res. Part C, 27:219–232. http://dx.doi.org/10.1016/j.trc.2012.08.004
[30]
Zhang, L., Ma, J., Sun, J., 2012. Examples of validating an adaptive Kalman filter model for short-term traffic flow prediction. 12th Int. Conf. of Transportation Professionals, p.912–922. http://dx.doi.org/10.1061/9780784412442.094
[31]
Zhang, L., Liu, Q.C., Yang, W.C., , 2013. An improved k-nearest neighbor model for short-term traffic flow pre-diction. Proc.-Soc. Behav. Sci., 96:653–662. http://dx.doi.org/10.1016/j.sbspro.2013.08.076

RIGHTS & PERMISSIONS

2017 Zhejiang University and Springer-Verlag Berlin Heidelberg
PDF(1540 KB)

Accesses

Citations

Detail

Sections
Recommended

/