基于ARIMA和Kalman滤波的道路交通状态实时预测
东伟 徐, 永东 王, 利民 贾, 勇 秦, 宏辉 董
基于ARIMA和Kalman滤波的道路交通状态实时预测
道路交通流预测不仅可以为出行者提供实时有效的信息,而且可以帮助他们选择最佳路径,减少出行时间,实现道路交通路径诱导,缓解交通拥堵。本文提出了一种基于ARIMA模型和Kalman滤波算法的道路交通流预测方法。首先,基于道路交通历史数据建立时间序列的ARIMA模型。其次,结合ARIMA模型和Kalman滤波法构建道路交通预测算法,获取Kalman滤波的测量方程和更新方程。然后,基于历史道路交通数据进行算法的参数设定。最后,以北京的四条路段作为案例,对所提出的方法进行了分析。实验结果表明,基于ARIMA模型和Kalman滤波的实时道路交通状态预测方法是可行的,并且可以获得很高的精度。
ARIMA模型 / Kalman滤波 / 建模 / 训练 / 预测
[1] |
Brockwell, P.J., Davis, R.A., 2006. ARMA models. In: Casella, G., Fienberg, S., Olkin, I. (Eds.), Introduction to Time Series and Forecasting. Springer Science & Business Media, Berlin, Germany, p.83–100.
|
[2] |
Chang, T.H., Chueh, C.H., Yang, L.K., 2011. Dynamic traffic prediction for insufficient data roadways via automatic control theories. Contr. Eng. Pract., 19(12):1479–1489. http://dx.doi.org/10.1016/j.conengprac.2011.08.007
|
[3] |
Chen, B.K., Xie, Y.B., Tong, W.,
|
[4] |
Chen, C.Y., Hu, J.M., Meng, Q.,
|
[5] |
Diebold, F.X., Mariano, R.S., 1995. Comparing predictive accuracy. J. Bus. Econ. Stat., 13(3):134–144. http://dx.doi.org/10.1198/073500102753410444
|
[6] |
Dong, C.F., Ma, X., Wang, G.W.,
|
[7] |
Dong, C.F., Ma, X., Wang, B.H., 2010. Weighted congestion coefficient feedback in intelligent transportation systems. Phys. Lett. A, 374(11):1326–1331. http://dx.doi.org/10.1016/j.physleta.2010.01.011
|
[8] |
Durbin, J., Koopman, S.J., 2012. Time Series Analysis by State Space Methods. Oxford University Press, London, UK.
|
[9] |
Guo, J.H., Huang, W., Williams, B.M., 2014. Adaptive Kal-man filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification. Transp. Res. Part C, 43:50–64. http://dx.doi.org/10.1016/j.trc.2014.02.006
|
[10] |
Hoong, P.K., Tan, I.K.T., Chien, O.K.,
|
[11] |
Kirchgässner, G., Wolters, J., Hassler, U., 2012. Introduction to Modern Time Series Analysis. Springer Science & Business Media, Berlin, Germany.
|
[12] |
Kumar, K., Parida, M., Katiyar, V.K., 2013. Short term traffic flow prediction for a non urban highway using artificial neural network. Proc.-Soc. Behav. Sci., 104:755–764. http://dx.doi.org/10.1016/j.sbspro.2013.11.170
|
[13] |
Lin, L., Li, Y., Sadek, A., 2013. A k nearest neighbor based local linear wavelet neural network model for online short-term traffic volume prediction. Proc.-Soc. Behav. Sci., 96:2066–2077. http://dx.doi.org/10.1016/j.sbspro.2013.08.223
|
[14] |
Liu, H., Tian, H.Q., Li, Y.F., 2012. Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction. Appl. Energy, 98:415–424. http://dx.doi.org/10.1016/j.apenergy.2012.04.001
|
[15] |
Liu, J.Y., Wang, W.D., Gong, X.Y.,
|
[16] |
Liu, X.L., Jia, P., Wu, S.H.,
|
[17] |
Lv, L., Chen, M., Liu, Y.,
|
[18] |
Ma, T., Zhou, Z., Abdulhai, B., 2015. Nonlinear multivariate time–space threshold vector error correction model for short term traffic state prediction. Transp. Res. Part B, 76:27–47. http://dx.doi.org/10.1016/j.trb.2015.02.008
|
[19] |
Ma, X.L., Tao, Z.M., Wang, Y.H.,
|
[20] |
Min, W., Wynter, L., 2011. Real-time road traffic prediction with spatio-temporal correlations. Transp. Res. Part C, 19(4):606–616. http://dx.doi.org/10.1016/j.trc.2010.10.002
|
[21] |
Moretti, F., Pizzuti, S., Panzieri, S.,
|
[22] |
Ojeda, L.L., Kibangou, A.Y., de Wit, C.C., 2013. Adaptive Kalman filtering for multi-step ahead traffic flow predic-tion. IEEE American Control Conf., p.4724–4729. http://dx.doi.org/10.1109/ACC.2013.6580568
|
[23] |
Pan, T.L., Sumalee, A., Zhong, R.X.,
|
[24] |
Park, J., Li, D., Murphey, Y.L.,
|
[25] |
Qi, Y., Ishak, S., 2014. A hidden Markov model for short term prediction of traffic conditions on freeways. Transp. Res. Part C, 43:95–111. http://dx.doi.org/10.1016/j.trc.2014.02.007
|
[26] |
Smith, B.L., Williams, B.M., Oswald, R.K., 2002. Comparison of parametric and nonparametric models for traffic flow forecasting. Transp. Res. Part C, 10(4):303–321. http://dx.doi.org/10.1016/S0968-090X(02)00009-8
|
[27] |
Sommer, M., Tomforde, S., Haehner, J., 2015. A systematic study on forecasting of traffic flows with artificial neural networks. Proc. 28th Int. Conf. on. Architecture of Computing Systems, p.1–8.
|
[28] |
Vlahogianni, E.I., Karlaftis, M.G., Golias, J.C., 2005. Opti-mized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach. Transp. Res. Part C, 13(3):211–234. http://dx.doi.org/10.1016/j.trc.2005.04.007
|
[29] |
Wang, J., Shi, Q.X., 2013. Short-term traffic speed forecasting hybrid model based on chaos–wavelet analysis-support vector machine theory. Transp. Res. Part C, 27:219–232. http://dx.doi.org/10.1016/j.trc.2012.08.004
|
[30] |
Zhang, L., Ma, J., Sun, J., 2012. Examples of validating an adaptive Kalman filter model for short-term traffic flow prediction. 12th Int. Conf. of Transportation Professionals, p.912–922. http://dx.doi.org/10.1061/9780784412442.094
|
[31] |
Zhang, L., Liu, Q.C., Yang, W.C.,
|
/
〈 | 〉 |