A novel ternary half adder and multiplier based on carbon nanotube field effect transistors
Sepehr TABRIZCHI, Nooshin AZIMI, Keivan NAVI
A novel ternary half adder and multiplier based on carbon nanotube field effect transistors
A lot of research has been done on multiple-valued logic (MVL) such as ternary logic in these years. MVL reduces the number of necessary operations and also decreases the chip area that would be used. Carbon nanotube field effect transistors (CNTFETs) are considered a viable alternative for silicon transistors (MOSFETs). Combining carbon nanotube transistors and MVL can produce a unique design that is faster and more flexible. In this paper, we design a new half adder and a new multiplier by nanotechnology using a ternary logic, which decreases the power consumption and chip surface and raises the speed. The presented design is simulated using CNTFET of Stanford University and HSPICE software, and the results are compared with those of other studies.
CNTFET-based design / Ternary / Half adder / Multiplier / Multiple-valued logic (MVL)
[1] |
Alkaldy, E., Navi, K., Sharifi, F., et al, 2014. An ultra highspeed (4; 2) compressor with a new design approach for nanotechnology based on the multi-input majority function. J. Comput. Theor. Nanosci., 11(7):1691–1696. http://dx.doi.org/10.1166/jctn.2014.3552
|
[2] |
Azimi, N., Hoseini, H., Shahsavari, A., 2014. Designing a novel ternary multiplier using CNTFET. Int. J. Mod. Educat. Comput. Sci., 6(11):45–51. http://dx.doi.org/10.5815/ijmecs.2014.11.06
|
[3] |
Butler, J.T., 1991. Multiple-Valued Logic in VLSI Design. IEEE Computer Society Press, Washington DC, USA.
|
[4] |
Deng, J., Wong, H.P., 2007a. A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application-Part I: model of the intrinsic channel region. IEEE Trans. Electron Dev., 54(12):3186–3194. http://dx.doi.org/10.1109/TED.2007.909030
|
[5] |
Deng, J., Wong, H.P., 2007b. A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application-Part II: full device model and circuit performance benchmarking. IEEE Trans. Electron Dev., 54(12):3195–3205. http://dx.doi.org/10.1109/TED.2007.909043
|
[6] |
Etiemble, D., Israel, M., 1988. Comparison of binary and multivalued ICs according to VLSI criteria. Computer, 21(4):28–42. http://dx.doi.org/10.1109/2.49
|
[7] |
Haselman, M., Hauck, S., 2010. The future of integrated circuits: a survey of nanoelectronics. Proc. IEEE, 98(1):11–38. http://dx.doi.org/10.1109/JPROC.2009.2032356
|
[8] |
Heinze, S., Tersoff, J., Martel, R., et al, 2002. Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett., 89(10):106801. http://dx.doi.org/10.1103/PhysRevLett.89.106801
|
[9] |
Iijima, S., 1991. Helical microtubules of graphitic carbon. Nature, 354(6348):56–58. http://dx.doi.org/10.1038/354056a0
|
[10] |
Javey, A., Tu, R., Farmer, D.B., et al, 2005. High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. Nano Lett., 5(2):345–348. http://dx.doi.org/10.1021/nl047931j
|
[11] |
Keshavarzian, P., Navi, K., 2009. Universal ternary logic circuit design through carbon nanotube technology. Int. J. Nanotechnol., 6(10/11):942–953. http://dx.doi.org/10.1504/IJNT.2009.027557
|
[12] |
Keshavarzian, P., Sarikhani, R., 2014. A novel CNTFET-based ternary full adder. Circ. Syst. Signal Process., 33(3):665–679. http://dx.doi.org/10.1007/s00034-013-9672-6
|
[13] |
Kotiyal, S., Thapliyal, H., Ranganathan, N., 2015. Reversible logic based multiplication computing unit using binary tree data structure. J. Supercomput., 71(7):2668–2693. http://dx.doi.org/10.1007/s11227-015-1410-3
|
[14] |
Lin, S., Kim, Y.B., Lombardi, F., 2009. A novel CNTFETbased ternary logic gate design. IEEE Int. Midwest Symp. on Circuits & Systems, p.435–438. http://dx.doi.org/10.1109/MWSCAS.2009.5236063
|
[15] |
Lin, S., Kim, Y.B., Lombardi, F., 2011. CNTFET-based design of ternary logic gates and arithmetic circuits. IEEE Trans. Nanotechnol., 10(2):217–225. http://dx.doi.org/10.1109/TNANO.2009.2036845
|
[16] |
Martel, R., Schmidt, T., Shea, H., et al, 1998. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett., 73(17):2447–2449. http://dx.doi.org/10.1063/1.122477
|
[17] |
Mirzaee, R.F., Moaiyeri, M.H., Maleknejad, M., et al, 2013. Dramatically low-transistor-count high-speed ternary adders. Proc. IEEE 43rd Int. Symp. on Multiple-Valued Logic, p.170–175. http://dx.doi.org/10.1109/ISMVL.2013.24
|
[18] |
Moaiyeri, M.H., Doostaregan, A., Navi, K., 2011. Design of energy-efficient and robust ternary circuits for nanotechnology. IET Circ. Dev. Syst., 5(4):285–296. http://dx.doi.org/10.1049/iet-cds.2010.0340
|
[19] |
Moore, G.E., 1965. Cramming more components onto integrated circuits. Electronics, 38(8):114–117.
|
[20] |
Raychowdhury, A., Roy, K., 2004. A novel multiple-valued logic design using ballistic carbon nanotube FETs. Int. Symp. on Multiple-Valued Logic, p.14–19. http://dx.doi.org/10.1109/ISMVL.2004.1319913
|
[21] |
Raychowdhury, A., Roy, K., 2005. Carbon-nanotube-based voltage-mode multiple-valued logic design. IEEE Trans. Nanotechnol., 4(2):168–179. http://dx.doi.org/10.1109/TNANO.2004.842068
|
[22] |
Raychowdhury, A., Roy, K., 2007. Carbon nanotube electronics: design of high-performance and low-power digital circuits. IEEE Trans. Circ. Syst. I, 54(11):2391–2401. http://dx.doi.org/10.1109/TCSI.2007.907799
|
[23] |
Sharifi, F., Moaiyeri, M.H., Navi, K., 2015. A novel quaternary full adder cell based on nanotechnology. Int. J. Mod. Educat. Comput. Sci., 7(3):19–25. http://dx.doi.org/10.5815/ijmecs.2015.03.03
|
[24] |
Tabrizchi, S., Sharifi, H., Sharifi, F., et al, 2016. A novel design approach for ternary compressor cells based on CNTFETs. Circ. Syst. Signal Process., 35(9):3310–3322. http://dx.doi.org/10.1007/s00034-015-0197-z
|
[25] |
Thapliyal, H., Ranganathan, N., 2013. Design of efficient reversible logic-based binary and BCD adder circuits. ACM J. Emerg. Technol. Comput. Syst., 9(3):17. http://dx.doi.org/10.1145/2491682
|
/
〈 | 〉 |