Biologically inspired model of path integration based on head direction cells and grid cells

Yang ZHOU, De-wei WU

PDF(1068 KB)
PDF(1068 KB)
Front. Inform. Technol. Electron. Eng ›› 2016, Vol. 17 ›› Issue (5) : 435-448. DOI: 10.1631/FITEE.1500364

Biologically inspired model of path integration based on head direction cells and grid cells

Author information +
History +

Abstract

Some neurons in the brain of freely moving rodents show special firing pattern. The firing of head direction cells (HDCs) and grid cells (GCs) is related to the moving direction and distance, respectively. Thus, it is considered that these cells play an important role in the rodents’ path integration. To provide a bionic approach for the vehicle to achieve path integration, we present a biologically inspired model of path integration based on the firing characteristics of HDCs and GCs. The detailed implementation process of this model is discussed. Besides, the proposed model is realized by simulation, and the path integration performance is analyzed under different conditions. Simulations validate that the proposed model is effective and stable.

Keywords

Head direction cells (HDCs) / Grid cells (GCs) / Path integration / Bionic navigation

Cite this article

Download citation ▾
Yang ZHOU, De-wei WU. Biologically inspired model of path integration based on head direction cells and grid cells. Front. Inform. Technol. Electron. Eng, 2016, 17(5): 435‒448 https://doi.org/10.1631/FITEE.1500364

References

[1]
Burak, Y., Fiete, I.R., 2009. Accurate path integration in continuous attractor network models of grid cells. PLoS Comput. Biol., 5(2):e1000291. http://dx.doi.org/10.1371/journal.pcbi.1000291
[2]
Burgess, N., Barry, C., O’Keefe, J., 2007. An oscillatory interference model of grid cell firing. Hippocampus, 17(9): 801–812. http://dx.doi.org/10.1002/hipo.20327
[3]
Collett, T.S., Graham, P., 2004. Animal navigation: path integration, visual landmarks and cognitive maps. Current Biol., 14(12):R475–R477. http://dx.doi.org/10.1016/j.cub.2004.06.013
[4]
Erdem, U.M., Hasselmo, M.E., 2014. A biologically inspired hierarchical goal directed navigation model. J. Physiol.-Paris, 108(1):28–37. http://dx.doi.org/10.1016/j.jphysparis.2013.07.002
[5]
Fuhs, M.C., Touretzky, D.S., 2006 . A spin glass model of path integration in rat medial entorhinal cortex. J. Neurosci., 26(16):4266–4276. http://dx.doi.org/10.1523/jneurosci.4353-05.2006
[6]
Giocomo, L.M., Moser, M.B., Moser, E.I., 2011. Computational models of grid cells. Neuron, 71(4):589–603. http://dx.doi.org/10.1016/j.neuron.2011.07.023
[7]
Giocomo, L.M., Stensola, T., Bonnevie, T., , 2014. Topography of head direction cells in medial entorhinal cortex. Current Biol., 24(3):252–262. http://dx.doi.org/10.1016/j.cub.2013.12.002
[8]
Hafting, T., Fyhn, M., Molden, S., , 2005. Microstructure of a spatial map in the entorhinal cortex. Nature, 436:801–806. http://dx.doi.org/10.1038/nature03721
[9]
Hirel, J., Gaussier, P., Quoy, M., , 2013. The hippocampocortical loop: spatio-temporal learning and goal-oriented planning in navigation. Neur. Netw., 43:8–21. http://dx.doi.org/10.1016/j.neunet.2013.01.023
[10]
Huhn, Z., Somogyvári, Z., Kiss, T., , 2009. Distance coding strategies based on the entorhinal grid cell system. Neur. Netw., 22(5-6):536–543. http://dx.doi.org/10.1016/j.neunet.2009.06.029
[11]
Islam, T., Fukuzaki, R., 2010. A model of path integration and navigation based on head direction cells in entorhinal cortex. Int. Conf. on Neural Information Processing, p.82–90. http://dx.doi.org/10.1007/978-3-642-17537-4_11
[12]
Islam, T., Yamaguchi, Y., 2009. Representation of an environmental space by grid fields: a study with a computational model of the grid cell based on a column structure. Proc. Int. Joint Conf. on Neural Networks, p.14–19. http://dx.doi.org/10.1109/ijcnn.2009.5178755
[13]
Kesner, R.P., Rolls, E.T., 2015. A computational theory of hippocampal function, and tests of the theory: new developments. Neurosci. Biobehav. Rev., 48:92–147. http://dx.doi.org/10.1016/j.neubiorev.2014.11.009
[14]
Kim, D., Lee, J., 2011. Path integration mechanism with coarse coding of neurons. Neur. Process. Lett., 34(3): 277–291. http://dx.doi.org/10.1007/s11063-011-9198-5
[15]
Kraus, B.J., Robinson, R.J.II, White, J.A., , 2013. Hippocampal ‘‘time cells’’: time versus path integration. Neuron, 78(6):1090–1101. http://dx.doi.org/10.1016/j.neuron.2013.04.015
[16]
Kyriacou, T., 2011. An implementation of a biologically inspired model of head direction cells on a robot. 12th Conf. Towards Autonomous Robotic Systems, p.66–77. http://dx.doi.org/10.1007/978-3-642-23232-9_7
[17]
McNaughton, B.L., Battaglia, F.P., Jensen, O., , 2006. Path integration and the neural basis of the ‘cognitive map’. Nat. Rev. Neurosci., 7:663–678. http://dx.doi.org/10.1038/nrn1932
[18]
Mhatre, H., Gorchetchnikov, A., Grossberg, S., 2012. Grid cell hexagonal patterns formed by fast self-organized learning within entorhinal cortex. Hippocampus, 22(2): 320–334. http://dx.doi.org/10.1002/hipo.20901
[19]
Moser, E.I., Moser, M.B., 2013. Grid cells and neural coding in high-end cortices. Neuron, 80(3):765–774. http://dx.doi.org/10.1016/j.neuron.2013.09.043
[20]
Muir, G.M., Taube, J.S., 2004. Head direction cell activity and behavior in a navigation task requiring a cognitive mapping strategy. Behav. Brain Res., 153(1):249–253. http://dx.doi.org/10.1016/j.bbr.2003.12.007
[21]
O’Keefe, J., Dostrovsky, J., 1971. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res., 34(1):171–175. http://dx.doi.org/10.1016/0006-8993(71)90358-1
[22]
Oshiro, N., Kurata, K., Yamamoto, T., 2008. A selforganizing VQ model of head-direction cells and grid cells. Artif. Life Robot., 12:206–209. http://dx.doi.org/10.1007/s10015-007-0468-2
[23]
Siegrist, C., Etienne, A.S., Boulens, V., , 2003. Homing by path integration in a new environment. Animal Behav., 65(1):185–194. http://dx.doi.org/10.1006/anbe.2002.2036
[24]
Taube, J.S., 1998. Head direction cells and the neurophysiological basis for a sense of direction. Prog. Neurobiol., 55(3):225–256. http://dx.doi.org/10.1016/s0301-0082(98)00004-5
[25]
Walters, D.M., Stringer, S.M., 2010. Path integration of head direction: updating a packet of neural activity at the correct speed using neuronal time constants. Biol. Cybern., 103(1):21–41. http://dx.doi.org/10.1007/s00422-009-0355-0
[26]
Wiener, J.M., Berthoz, A., Wolbers, T., 2010. Dissociable cognitive mechanisms underlying human path integration. Exp. Brain Res., 208(1):61–71. http://dx.doi.org/10.1007/s00221-010-2460-7

RIGHTS & PERMISSIONS

2016 Zhejiang University and Springer-Verlag Berlin Heidelberg
PDF(1068 KB)

Accesses

Citations

Detail

Sections
Recommended

/