Biologically inspired model of path integration based on head direction cells and grid cells
Yang ZHOU, De-wei WU
Biologically inspired model of path integration based on head direction cells and grid cells
Some neurons in the brain of freely moving rodents show special firing pattern. The firing of head direction cells (HDCs) and grid cells (GCs) is related to the moving direction and distance, respectively. Thus, it is considered that these cells play an important role in the rodents’ path integration. To provide a bionic approach for the vehicle to achieve path integration, we present a biologically inspired model of path integration based on the firing characteristics of HDCs and GCs. The detailed implementation process of this model is discussed. Besides, the proposed model is realized by simulation, and the path integration performance is analyzed under different conditions. Simulations validate that the proposed model is effective and stable.
Head direction cells (HDCs) / Grid cells (GCs) / Path integration / Bionic navigation
[1] |
Burak, Y., Fiete, I.R., 2009. Accurate path integration in continuous attractor network models of grid cells. PLoS Comput. Biol., 5(2):e1000291. http://dx.doi.org/10.1371/journal.pcbi.1000291
|
[2] |
Burgess, N., Barry, C., O’Keefe, J., 2007. An oscillatory interference model of grid cell firing. Hippocampus, 17(9): 801–812. http://dx.doi.org/10.1002/hipo.20327
|
[3] |
Collett, T.S., Graham, P., 2004. Animal navigation: path integration, visual landmarks and cognitive maps. Current Biol., 14(12):R475–R477. http://dx.doi.org/10.1016/j.cub.2004.06.013
|
[4] |
Erdem, U.M., Hasselmo, M.E., 2014. A biologically inspired hierarchical goal directed navigation model. J. Physiol.-Paris, 108(1):28–37. http://dx.doi.org/10.1016/j.jphysparis.2013.07.002
|
[5] |
Fuhs, M.C., Touretzky, D.S., 2006 . A spin glass model of path integration in rat medial entorhinal cortex. J. Neurosci., 26(16):4266–4276. http://dx.doi.org/10.1523/jneurosci.4353-05.2006
|
[6] |
Giocomo, L.M., Moser, M.B., Moser, E.I., 2011. Computational models of grid cells. Neuron, 71(4):589–603. http://dx.doi.org/10.1016/j.neuron.2011.07.023
|
[7] |
Giocomo, L.M., Stensola, T., Bonnevie, T.,
|
[8] |
Hafting, T., Fyhn, M., Molden, S.,
|
[9] |
Hirel, J., Gaussier, P., Quoy, M.,
|
[10] |
Huhn, Z., Somogyvári, Z., Kiss, T.,
|
[11] |
Islam, T., Fukuzaki, R., 2010. A model of path integration and navigation based on head direction cells in entorhinal cortex. Int. Conf. on Neural Information Processing, p.82–90. http://dx.doi.org/10.1007/978-3-642-17537-4_11
|
[12] |
Islam, T., Yamaguchi, Y., 2009. Representation of an environmental space by grid fields: a study with a computational model of the grid cell based on a column structure. Proc. Int. Joint Conf. on Neural Networks, p.14–19. http://dx.doi.org/10.1109/ijcnn.2009.5178755
|
[13] |
Kesner, R.P., Rolls, E.T., 2015. A computational theory of hippocampal function, and tests of the theory: new developments. Neurosci. Biobehav. Rev., 48:92–147. http://dx.doi.org/10.1016/j.neubiorev.2014.11.009
|
[14] |
Kim, D., Lee, J., 2011. Path integration mechanism with coarse coding of neurons. Neur. Process. Lett., 34(3): 277–291. http://dx.doi.org/10.1007/s11063-011-9198-5
|
[15] |
Kraus, B.J., Robinson, R.J.II, White, J.A.,
|
[16] |
Kyriacou, T., 2011. An implementation of a biologically inspired model of head direction cells on a robot. 12th Conf. Towards Autonomous Robotic Systems, p.66–77. http://dx.doi.org/10.1007/978-3-642-23232-9_7
|
[17] |
McNaughton, B.L., Battaglia, F.P., Jensen, O.,
|
[18] |
Mhatre, H., Gorchetchnikov, A., Grossberg, S., 2012. Grid cell hexagonal patterns formed by fast self-organized learning within entorhinal cortex. Hippocampus, 22(2): 320–334. http://dx.doi.org/10.1002/hipo.20901
|
[19] |
Moser, E.I., Moser, M.B., 2013. Grid cells and neural coding in high-end cortices. Neuron, 80(3):765–774. http://dx.doi.org/10.1016/j.neuron.2013.09.043
|
[20] |
Muir, G.M., Taube, J.S., 2004. Head direction cell activity and behavior in a navigation task requiring a cognitive mapping strategy. Behav. Brain Res., 153(1):249–253. http://dx.doi.org/10.1016/j.bbr.2003.12.007
|
[21] |
O’Keefe, J., Dostrovsky, J., 1971. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res., 34(1):171–175. http://dx.doi.org/10.1016/0006-8993(71)90358-1
|
[22] |
Oshiro, N., Kurata, K., Yamamoto, T., 2008. A selforganizing VQ model of head-direction cells and grid cells. Artif. Life Robot., 12:206–209. http://dx.doi.org/10.1007/s10015-007-0468-2
|
[23] |
Siegrist, C., Etienne, A.S., Boulens, V.,
|
[24] |
Taube, J.S., 1998. Head direction cells and the neurophysiological basis for a sense of direction. Prog. Neurobiol., 55(3):225–256. http://dx.doi.org/10.1016/s0301-0082(98)00004-5
|
[25] |
Walters, D.M., Stringer, S.M., 2010. Path integration of head direction: updating a packet of neural activity at the correct speed using neuronal time constants. Biol. Cybern., 103(1):21–41. http://dx.doi.org/10.1007/s00422-009-0355-0
|
[26] |
Wiener, J.M., Berthoz, A., Wolbers, T., 2010. Dissociable cognitive mechanisms underlying human path integration. Exp. Brain Res., 208(1):61–71. http://dx.doi.org/10.1007/s00221-010-2460-7
|
/
〈 | 〉 |