AKself-adaptive SDNcontroller placement for wide area networks

Project supported by the National Natural Science Foundation of China (Nos. 61432002, 61370199, 61370198, 61300187, and 61402069), the Fundamental Research Funds for the Central Universities, China (Nos. DUT15QY20, DUT15TD29, and 3132016029), and the Prospective Research Project on Future Networks from Jiangsu Future Networks Innovation Institute, China

A preliminary version was presented at the IEEE/CIC International Conference on Communications in China, Shanghai, China, Oct. 13–15, 2014

Peng XIAO, Zhi-yang LI, Song GUO, Heng QI, Wen-yu QU, Hai-sheng YU

PDF(778 KB)
PDF(778 KB)
Front. Inform. Technol. Electron. Eng ›› 2016, Vol. 17 ›› Issue (7) : 620-633. DOI: 10.1631/FITEE.1500350
Article
Article

AKself-adaptive SDNcontroller placement for wide area networks

Project supported by the National Natural Science Foundation of China (Nos. 61432002, 61370199, 61370198, 61300187, and 61402069), the Fundamental Research Funds for the Central Universities, China (Nos. DUT15QY20, DUT15TD29, and 3132016029), and the Prospective Research Project on Future Networks from Jiangsu Future Networks Innovation Institute, China

A preliminary version was presented at the IEEE/CIC International Conference on Communications in China, Shanghai, China, Oct. 13–15, 2014

Author information +
History +

Abstract

As a novel architecture, software-defined networking (SDN) is viewed as the key technology of future networking. The core idea of SDN is to decouple the control plane and the data plane, enabling centralized, flexible, and programmable network control. Although local area networks like data center networks have benefited from SDN, it is still a problem to deploy SDN in wide area networks (WANs) or large-scale networks. Existing works show that multiple controllers are required in WANs with each covering one small SDN domain. However, the problems of SDN domain partition and controller placement should be further addressed. Therefore, we propose the spectral clustering based partition and placement algorithms, by which we can partition a large network into several small SDN domains efficiently and effectively. In our algorithms, the matrix perturbation theory and eigengap are used to discover the stability of SDN domains and decide the optimal number of SDN domains automatically. To evaluate our algorithms, we develop a new experimental framework with the Internet2 topology and other available WAN topologies. The results show the effectiveness of our algorithm for the SDN domain partition and controller placement problems.

Keywords

Software-defined networking (SDN) / Controller placement / K self-adaptive method

Cite this article

Download citation ▾
Peng XIAO, Zhi-yang LI, Song GUO, Heng QI, Wen-yu QU, Hai-sheng YU. AKself-adaptive SDNcontroller placement for wide area networks. Front. Inform. Technol. Electron. Eng, 2016, 17(7): 620‒633 https://doi.org/10.1631/FITEE.1500350

References

[1]
Bach, F.R., Jordan, M.I., 2003. Learning Spectral Clustering. Technical Report, No. UCB/CSD-03-1249. University of California at Berkeley, USA.
[2]
Cai, Z., Cox, A.L., Ng, T.S.E., 2010. Maestro: a system for scalable OpenFlow control. Technical Report, TR10-08. Rice University, USA.
[3]
Dixit, A., Hao, F., Mukherjee, S., , 2013. Towards an elastic distributed SDN controller. ACM SIGCOMM Comput. Commun. Rev., 43(4):7–12. http://dx.doi.org/10.1145/2491185.2491193
[4]
Erickson, D., 2013. The beacon OpenFlow controller. Proc. 2nd ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, p.13–18. http://dx.doi.org/10.1145/2491185.2491189
[5]
Gude, N., Koponen, T., Pettit, J., , 2008. NOX: towards an operating system for networks. ACM SIGCOMM Comput. Commun. Rev., 38(3):105–110. http://dx.doi.org/10.1145/1384609.1384625
[6]
Heller, B., Sherwood, R., McKeown, N., 2012. The controller placement problem. Proc. 1st Workshop on Hot Topics in Software Defined Networks, p.7–12. http://dx.doi.org/10.1145/2342441.2342444
[7]
Hock, D., Hartmann, M., Gebert, S., , 2013. Paretooptimal resilient controller placement in SDN-based core networks. Proc. 25th Int. Teletraffic Congress, p.1–9. http://dx.doi.org/10.1109/ITC.2013.6662939
[8]
Kirkpatrick, K., 2013. Software-defined networking. Commun. ACM, 56(9):16–19. http://dx.doi.org/10.1145/2500468.2500473
[9]
Knight, S., Nguyen, H.X., Falkner, N., , 2011. The Internet topology zoo. IEEE J. Sel. Areas Commun., 29(9):1765–1775. http://dx.doi.org/10.1109/JSAC.2011.111002
[10]
Koponen, T., Casado, M., Gude, N., , 2010. Onix: a distributed control platform for large-scale production networks. Proc. OSDI, p.1–14.
[11]
Kreutz, D., Ramos, F.M.V., Veríssimo, P.E., , 2015. Software-defined networking: a comprehensive survey. Proc. IEEE, 103(1):14–76. http://dx.doi.org/10.1109/JPROC.2014.2371999
[12]
Lin, P., Bi, J., Wang, Y., 2013. East-west bridge for SDN network peering. Proc. 2nd CCF Int. Conf. of China, p.170–181. http://dx.doi.org/10.1007/978-3-642-53959-6_16
[13]
Liu, N., Lu, Y., Tang, X.J., , 2014. Study on automatically determining the optimal number of clusters present in spectral co-clustering documents and words. J. Chin. Comput. Syst., 35(3):610–614 (in Chinese).
[14]
Mall, R., Langone, R., Suykens, J.A.K., 2013. Self-tuned kernel spectral clustering for large scale networks. Proc. IEEE Int. Conf. on Big Data, p.385–393. http://dx.doi.org/10.1109/BigData.2013.6691599
[15]
McKeown, N., Anderson, T., Balakrishnan, H., , 2008. OpenFlow: enabling innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev., 38(2):69–74. http://dx.doi.org/10.1145/1355734.1355746
[16]
Ng, A.Y., Jordan, M.I., Weiss, Y., 2001. On spectral clustering: analysis and an algorithm. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (Eds.). Advances in Neural Information Processing Systems 14, p.849–856.
[17]
Phemius, K., Bouet, M., Leguay, J., 2014. DISCO: distributed multi-domain SDN controllers. Proc. IEEE Network Operations and Management Symp., p.1–4. http://dx.doi.org/10.1109/NOMS.2014.6838330
[18]
Rebagliati, N., Verri, A., 2011. Spectral clustering with more than K eigenvectors. Neurocomputing, 74(9):1391–1401. http://dx.doi.org/10.1016/j.neucom.2010.12.008
[19]
Shah, S.A., Faiz, J., Farooq, M., , 2013. An architectural evaluation of SDN controllers. Proc. IEEE Int. Conf. on Communications, p.3504–3508. http://dx.doi.org/10.1109/ICC.2013.6655093
[20]
Shalimov, A., Zuikov, D., Zimarina, D., , 2013. Advanced study of SDN/OpenFlow controllers. Proc. 9th Central & Eastern European Software Engineering Conf. in Russia, Article 1. http://dx.doi.org/10.1145/2556610.2556621
[21]
Shi, J., Malik, J., 2000. Normalized cuts and image segmentation. IEEE Trans. Patt. Anal. Mach. Intell., 22(8):888–905. http://dx.doi.org/10.1109/34.868688
[22]
Tam, A.S.W., Xi, K., Chao, H.J., 2011. Use of devolved controllers in data center networks. Proc. IEEE Conf. on Computer Communications Workshops, p.596–601. http://dx.doi.org/10.1109/INFCOMW.2011.5928883
[23]
Tian, Z., Li, X., Ju, Y., 2007. Spectral clustering based on matrix perturbation theory. Sci. China Ser. F, 50(1): 63–81. http://dx.doi.org/10.1007/s11432-007-0007-8
[24]
Tootoonchian, A., Ganjali, Y., 2010. HyperFlow: a distributed control plane for OpenFlow. Proc. Int. Network Management Conf. on Research on Enterprise Networking, p.1–6.
[25]
Tootoonchian, A., Gorbunov, S., Ganjali, Y., , 2012. On controller performance in software-defined networks. Proc. 2nd USENIX Conf. on Hot Topics in Management of Internet, Cloud, and Enterprise Networks and Services, p.1–6.
[26]
von Luxburg, U., 2007. A tutorial on spectral clustering. Stat. Comput., 17(4):395–416. http://dx.doi.org/10.1007/s11222-007-9033-z
[27]
Wang, L., Bo, L.F., Jiao, L.C., 2007. Density-sensitive spectral clustering. Acta Electron. Sin., 35(8):1577–1581 (in Chinese).
[28]
Wauthier, F.L., Jojic, N., Jordan, M.I., 2012. Active spectral clustering via iterative uncertainty reduction. Proc. 18th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.1339–1347. http://dx.doi.org/10.1145/2339530.2339737
[29]
Xiao, P., Qu, W., Li, Z., 2014. The SDN controller placement problem for WAN. Proc. IEEE/CIC Int. Conf. on Communications in China, p.220–224. http://dx.doi.org/10.1109/ICCChina.2014.7008275
[30]
Xie, H., Tsou, T., Lopez, D., , 2012. Software-Defined Networking Efforts Debuted at IETF 84.
[31]
Yin, H., Xie, H., Tsou, T., , 2012. SDNi: a Message Exchange Protocol for Software Defined Networks (SDNS) across Multiple Domains. Available from https://www.bibsonomy.org/bibtex/216048b64b0994fd6576585efe239a092/chesteve.
[32]
Yu, M., Rexford, J., Freedman, M.J., , 2010. Scalable flow-based networking with DIFANE. ACM SIGCOMM Comput. Commun. Rev., 40(4):351–362. http://dx.doi.org/10.1145/1851275.1851224
[33]
Zelnik-Manor, L., Perona, P., 2004. Self-tuning spectral clustering. In: Saul, L.K., Weiss, Y., Bottou, L. (Eds.), Advances in Neural Information Processing Systems 17, p.1601–1608.

RIGHTS & PERMISSIONS

2016 Zhejiang University and Springer-Verlag Berlin Heidelberg
PDF(778 KB)

Accesses

Citations

Detail

Sections
Recommended

/