千兆赫片上互联单壁纳米碳管电分析

Zamshed Iqbal CHOWDHURY, Md. Istiaque RAHAMAN, M. Shamim KAISER

PDF(621 KB)
PDF(621 KB)
Front. Inform. Technol. Electron. Eng ›› 2017, Vol. 18 ›› Issue (2) : 262-271. DOI: 10.1631/FITEE.1500349
Article
Article

千兆赫片上互联单壁纳米碳管电分析

Author information +
History +

Abstract

在未来的高频系统芯片,特别是片上网络的设计中,知识产权模块之间的联系至为关键,而单壁纳米碳管则是其中一种很有前景的纳米结构。电路及系统尺寸的不断缩减限制了对1000 GH级别高频信号特征的利用。本文针对不同结构构型的单壁纳米碳管,对高质量互联中四项重要的四项电参数——阻抗,传播常量,电流密度以及信号延时进行了推导。每个参数均表现出了对其设计互联频率范围和构型的强相关性。与现有理论和实验结果相比,本文所提出的模型在解决下一代高速集成电路互联问题上有其新颖性。

Keywords

互联 / 碳纳米管 / 电流密度 / 传播常量 / 特性阻抗 / 片上系统

Cite this article

Download citation ▾
Zamshed Iqbal CHOWDHURY, Md. Istiaque RAHAMAN, M. Shamim KAISER. 千兆赫片上互联单壁纳米碳管电分析. Front. Inform. Technol. Electron. Eng, 2017, 18(2): 262‒271 https://doi.org/10.1631/FITEE.1500349

References

[1]
Allan, A., Edenfeld, D., Joyner, W.H., , 2002. 2001 technology roadmap for semiconductors. Computer, 35(1):42–53. http://dx.doi.org/10.1109/2.976918
[2]
Anantram, M.P., Léonard, F., 2006. Physics of carbon nanotube electronic devices. Rep. Prog. Phys., 69(3):507–561. http://dx.doi.org/10.1088/0034-4885/69/3/R01
[3]
Baughman, R.H., Zakhidov, A.A., de Heer, W.A., 2002. Carbon nanotubes—the route toward applications. Science, 297(5582):787–792. http://dx.doi.org/10.1126/science.1060928
[4]
Burke, P.J., 2002a. Lüttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans. Nanotechnol., 1(3):129–144. http://dx.doi.org/10.1109/TNANO.2002.806823
[5]
Burke, P.J., 2002b. An RF circuit model for carbon nanotubes. Proc. 2nd IEEE Conf. on Nanotechnology, p.393–396. http://dx.doi.org/10.1109/NANO.2002.1032273
[6]
Cursaru, D., Enescu, D., Ciuparu, D., 2011. Control of (n, m) selectivity in single wall carbon nanotubes (SWNT) growth by varying the Co-Ni ratio in bi-metallic Co-Ni-MCM 41 catalysts. Rev. Chim.-Bucharest, 62(7):792–798.
[7]
Dragoman, M., Grenier, K., Dubuc, D., , 2006. Experimental determination of microwave attenuation and electrical permittivity of double-walled carbon nanotubes. Appl. Phys. Lett., 8(15):1–3. http://dx.doi.org/10.1063/1.2193464
[8]
Fagan, A.J., Hároz, E.H., Ihly, R., , 2015. Isolation of>1 nm diameter single-wall carbon nanotube species using aqueous two-phase extraction. ACS Nano, 9(5):5377–5390. http://dx.doi.org/10.1021/acsnano.5b01123
[9]
Galand, R., Brunetti, G., Arnaud, L., , 2013. Microstructural void environment characterization by electron imaging in 45 nm technology node to link electromigration and Copper microstructure. Microelectron. Eng., 106:168–171. http://dx.doi.org/10.1016/j.mee.2013.01.018
[10]
Huang, C.Y., Hu, C.Y., Pan, H.C., , 2005. Electrooptical responses of carbon nanotube-doped liquid crystal devices. Jpn. J. Appl. Phys., 44(11):8077–8081. http://dx.doi.org/10.1143/JJAP.44.8077
[11]
Iqbal, M.Z., Puigdemont, J.P., Eom, J., , 2014. Highfrequency impedance of single-walled carbon nanotube networks on transparent flexible substrate. Phys. Status Sol. B, 251(12):2461–2465. http://dx.doi.org/10.1002/pssb.201451233
[12]
Ismail, Y., Friedman, E.G., Neves, J.L., 2000. Equivalent Elmore delay for RLC trees. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst., 19(1):83–97. http://dx.doi.org/10.1109/43.822622
[13]
Jespersen, T.S., Nygård, J., 2005. Charge trapping in carbon nanotube loops demonstrated by electrostatic force microscopy. Nano Lett., 5(9):1838–1841. http://dx.doi.org/10.1021/nl0505997
[14]
Journet, C., Maser, W.K., Bernier, P., , 1997. Largescale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 388(6644):756–758. http://dx.doi.org/10.1038/41972
[15]
Kane, C., Balents, L., Fisher, M.P., 1997. Coulomb interactions and mesoscopic effects in carbon nanotubes. Phys. Rev. Lett., 79(25):5086–5089. http://dx.doi.org/10.1103/PhysRevLett.79.5086
[16]
Kreupl, F., 2008. Carbon nanotubes in microelectronic applications. In: Hierold, C., Brand, O., Fedder, G.K. (Eds.), Carbon Nanotube Devices: Properties, Modelling, Integration and Applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, p.1–42. http://dx.doi.org/10.1002/9783527622597.ch1
[17]
Liang, F., Wang, G., Ding, W., 2011. Estimation of time delay and repeater insertion in multiwall carbon nanotube interconnects. IEEE Trans. Electron. Dev., 58(8):2712–2720. http://dx.doi.org/10.1109/TED.2011.2154334
[18]
Liu, C., Cheng, H.M., 2013. Carbon nanotubes: controlled growth and application. Mater. Today, 16(1-2):19–28. http://dx.doi.org/10.1016/j.mattod.2013.01.019
[19]
McEuen, P.L., Fuhrer, M.S., Park, H., 2002. Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol., 99(1):78–85. http://dx.doi.org/10.1109/TNANO.2002.1005429
[20]
Nieuwoudt, A., Massoud, Y., 2006. Understanding the impact of inductance in carbon nanotube bundles for VLSI interconnect using scalable modeling techniques. IEEE Trans. Nanotechnol., 5(6):758–765. http://dx.doi.org/10.1109/TNANO.2006.883480
[21]
Nihei, M., Horibe, M., Kawabata, A., , 2004. Carbon nanotube vias for future LSI interconnects. Proc. IEEE Int. Interconnect Technology Conf., p.251–253. http://dx.doi.org/10.1109/IITC.2004.1345767
[22]
Ounaies, Z., Park, C., Wise, K.E., , 2003. Electrical properties of single wall carbon nanotube reinforced polyimide composites. Compos. Sci. Technol., 63(11):1637–1646. http://dx.doi.org/10.1016/S0266-3538(03)00067-8
[23]
Srivastava, N., Banarjee, K., 2005. Performance analysis of carbon nanotube interconnects for VLSI applications. IEEE/ACM Int. Conf. Computer-Aided Design, p.383–390. http://dx.doi.org/10.1109/ICCAD.2005.1560098
[24]
Srivastava, N., Li, H., Kreupl, F., , 2009. On the applicability of single-walled carbon nanotubes as VLSI interconnects. IEEE Trans. Nanotechnol., 8(4):542–559. http://dx.doi.org/10.1109/TNANO.2009.2013945
[25]
Thess, A., Lee, R., Nikolaev, P., , 1996. Crystalline ropes of metallic carbon nanotubes. Science, 273(5274):483–487. http://dx.doi.org/10.1126/science.273.5274.483
[26]
Yuzvinsky, T.D., Mickelson, W., Aloni, S., , 2006. Shrinking a carbon nanotube. Nano Lett., 6(12):2718–2722. http://dx.doi.org/10.1021/nl061671j
[27]
Zhao, Y.P., Wei, B.Q., Ajayan, P.M., , 2001. Frequencydependent electrical transport in carbon nanotubes. Phys. Rev. B, 64(20):201402. http://dx.doi.org/10.1103/PhysRevB.64.201402
[28]
Zhou, Y., Sreekala, S., Ajayan, P.M., , 2008. Resistance of copper nanowires and comparison with carbon nano-tube bundles for interconnect applications using first principles calculations. J. Phys.-Condens. Matter, 20(9):1–5. http://dx.doi.org/10.1088/0953-8984/20/9/095209

RIGHTS & PERMISSIONS

2017 Zhejiang University and Springer-Verlag Berlin Heidelberg
PDF(621 KB)

Accesses

Citations

Detail

Sections
Recommended

/