千兆赫片上互联单壁纳米碳管电分析
Zamshed Iqbal CHOWDHURY, Md. Istiaque RAHAMAN, M. Shamim KAISER
千兆赫片上互联单壁纳米碳管电分析
在未来的高频系统芯片,特别是片上网络的设计中,知识产权模块之间的联系至为关键,而单壁纳米碳管则是其中一种很有前景的纳米结构。电路及系统尺寸的不断缩减限制了对1000 GH级别高频信号特征的利用。本文针对不同结构构型的单壁纳米碳管,对高质量互联中四项重要的四项电参数——阻抗,传播常量,电流密度以及信号延时进行了推导。每个参数均表现出了对其设计互联频率范围和构型的强相关性。与现有理论和实验结果相比,本文所提出的模型在解决下一代高速集成电路互联问题上有其新颖性。
互联 / 碳纳米管 / 电流密度 / 传播常量 / 特性阻抗 / 片上系统
[1] |
Allan, A., Edenfeld, D., Joyner, W.H.,
|
[2] |
Anantram, M.P., Léonard, F., 2006. Physics of carbon nanotube electronic devices. Rep. Prog. Phys., 69(3):507–561. http://dx.doi.org/10.1088/0034-4885/69/3/R01
|
[3] |
Baughman, R.H., Zakhidov, A.A., de Heer, W.A., 2002. Carbon nanotubes—the route toward applications. Science, 297(5582):787–792. http://dx.doi.org/10.1126/science.1060928
|
[4] |
Burke, P.J., 2002a. Lüttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans. Nanotechnol., 1(3):129–144. http://dx.doi.org/10.1109/TNANO.2002.806823
|
[5] |
Burke, P.J., 2002b. An RF circuit model for carbon nanotubes. Proc. 2nd IEEE Conf. on Nanotechnology, p.393–396. http://dx.doi.org/10.1109/NANO.2002.1032273
|
[6] |
Cursaru, D., Enescu, D., Ciuparu, D., 2011. Control of (n, m) selectivity in single wall carbon nanotubes (SWNT) growth by varying the Co-Ni ratio in bi-metallic Co-Ni-MCM 41 catalysts. Rev. Chim.-Bucharest, 62(7):792–798.
|
[7] |
Dragoman, M., Grenier, K., Dubuc, D.,
|
[8] |
Fagan, A.J., Hároz, E.H., Ihly, R.,
|
[9] |
Galand, R., Brunetti, G., Arnaud, L.,
|
[10] |
Huang, C.Y., Hu, C.Y., Pan, H.C.,
|
[11] |
Iqbal, M.Z., Puigdemont, J.P., Eom, J.,
|
[12] |
Ismail, Y., Friedman, E.G., Neves, J.L., 2000. Equivalent Elmore delay for RLC trees. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst., 19(1):83–97. http://dx.doi.org/10.1109/43.822622
|
[13] |
Jespersen, T.S., Nygård, J., 2005. Charge trapping in carbon nanotube loops demonstrated by electrostatic force microscopy. Nano Lett., 5(9):1838–1841. http://dx.doi.org/10.1021/nl0505997
|
[14] |
Journet, C., Maser, W.K., Bernier, P.,
|
[15] |
Kane, C., Balents, L., Fisher, M.P., 1997. Coulomb interactions and mesoscopic effects in carbon nanotubes. Phys. Rev. Lett., 79(25):5086–5089. http://dx.doi.org/10.1103/PhysRevLett.79.5086
|
[16] |
Kreupl, F., 2008. Carbon nanotubes in microelectronic applications. In: Hierold, C., Brand, O., Fedder, G.K. (Eds.), Carbon Nanotube Devices: Properties, Modelling, Integration and Applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, p.1–42. http://dx.doi.org/10.1002/9783527622597.ch1
|
[17] |
Liang, F., Wang, G., Ding, W., 2011. Estimation of time delay and repeater insertion in multiwall carbon nanotube interconnects. IEEE Trans. Electron. Dev., 58(8):2712–2720. http://dx.doi.org/10.1109/TED.2011.2154334
|
[18] |
Liu, C., Cheng, H.M., 2013. Carbon nanotubes: controlled growth and application. Mater. Today, 16(1-2):19–28. http://dx.doi.org/10.1016/j.mattod.2013.01.019
|
[19] |
McEuen, P.L., Fuhrer, M.S., Park, H., 2002. Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol., 99(1):78–85. http://dx.doi.org/10.1109/TNANO.2002.1005429
|
[20] |
Nieuwoudt, A., Massoud, Y., 2006. Understanding the impact of inductance in carbon nanotube bundles for VLSI interconnect using scalable modeling techniques. IEEE Trans. Nanotechnol., 5(6):758–765. http://dx.doi.org/10.1109/TNANO.2006.883480
|
[21] |
Nihei, M., Horibe, M., Kawabata, A.,
|
[22] |
Ounaies, Z., Park, C., Wise, K.E.,
|
[23] |
Srivastava, N., Banarjee, K., 2005. Performance analysis of carbon nanotube interconnects for VLSI applications. IEEE/ACM Int. Conf. Computer-Aided Design, p.383–390. http://dx.doi.org/10.1109/ICCAD.2005.1560098
|
[24] |
Srivastava, N., Li, H., Kreupl, F.,
|
[25] |
Thess, A., Lee, R., Nikolaev, P.,
|
[26] |
Yuzvinsky, T.D., Mickelson, W., Aloni, S.,
|
[27] |
Zhao, Y.P., Wei, B.Q., Ajayan, P.M.,
|
[28] |
Zhou, Y., Sreekala, S., Ajayan, P.M.,
|
/
〈 | 〉 |