Enhancing the performance of futurewireless networks with software-defined networking<FootNote> Project supported by the US National Science Foundation (Nos. CNS-1247955 and CNS-1320664) and the Wireless Engineering Research and Education Center (WEREC) at Auburn University, Auburn, USA </FootNote>
Mingjie FENG, Shiwen MAO, Tao JIANG
Enhancing the performance of futurewireless networks with software-defined networking<FootNote> Project supported by the US National Science Foundation (Nos. CNS-1247955 and CNS-1320664) and the Wireless Engineering Research and Education Center (WEREC) at Auburn University, Auburn, USA </FootNote>
To provide ubiquitous Internet access under the explosive increase of applications and data traffic, the current network architecture has become highly heterogeneous and complex, making network management a challenging task. To this end, software-defined networking (SDN) has been proposed as a promising solution. In the SDN architecture, the control plane and the data plane are decoupled, and the network infrastructures are abstracted and managed by a centralized controller. With SDN, efficient and flexible network control can be achieved, which potentially enhances network performance. To harvest the benefits of SDN in wireless networks, the software-defined wireless network (SDWN) architecture has been recently considered. In this paper, we first analyze the applications of SDN to different types of wireless networks. We then discuss several important technical aspects of performance enhancement in SDN-based wireless networks. Finally, we present possible future research directions of SDWN.
Software-defined networking (SDN) / Software-defined wireless networks (SDWN) / OpenFlow / Performance enhancement
[1] |
Abbasia, A.A., Younis, M., 2007. A survey on clustering algorithms for wireless sensor networks. Comput. Commun., 30(14-15):2826–2841. http://dx.doi.org/10.1016/j.comcom.2007.05.024
|
[2] |
Akkaya, K., Younis, M., 2005. A survey on routing protocols for wireless sensor networks. Ad Hoc Netw., 3(3):325–349. http://dx.doi.org/10.1016/j.adhoc.2003.09.010
|
[3] |
Akyildiz, I.F., Wang, X., 2005. A survey on wireless mesh networks. IEEE Commun. Mag., 43(9):S23–S30. http://dx.doi.org/10.1109/MCOM.2005.1509968
|
[4] |
Akyildiz, I.F., Su, W., Sankarasubramaniam, Y.,
|
[5] |
Ali-Ahmad, H., Cicconetti, C., de la Oliva, A.,
|
[6] |
Al-Karaki, J.N., Kamal, A.E., 2004. Routing techniques in wireless sensor networks: a survey. IEEE Wirel. Commun., 11(6):6–28. http://dx.doi.org/10.1109/MWC.2004.1368893
|
[7] |
Andrews, J.G., Buzzi, S., Choi, W.,
|
[8] |
Arslan, M.Y., Sundaresan, K., Rangarajan, S., 2015. Software-defined networking in cellular radio access networks: potential and challenges. IEEE Commun. Mag., 53(1):150–156. http://dx.doi.org/10.1109/MCOM.2015.7010528
|
[9] |
Arslan, Z., Erel, M., Özcevik, Y.,
|
[10] |
Bansal, M., Mehlman, J., Katti, S.,
|
[11] |
Bernardos, C.J., de la Oliva, A., Serrano, P.,
|
[12] |
Cai, Y., Yu, F.R., Liang, C., 2014. Resource sharing for software defined D2D communications in virtual wireless networks with imperfect NSI. Proc. IEEE Global Communications Conf., p.4448–4453. http://dx.doi.org/10.1109/GLOCOM.2014.7037508
|
[13] |
Cao, Y., Jiang, T., Wang, C., 2015. Cooperative deviceto-device communications in cellular networks. IEEE Wirel. Commun., 22(3):124–129. http://dx.doi.org/10.1109/MWC.2015.7143335
|
[14] |
Chandrasekhar, V., Andrews, J.G., 2009. Spectrum allocation in tiered cellular networks. IEEE Trans. Commun., 57(10):3059–3068. http://dx.doi.org/10.1109/TCOMM.2009.10.080529
|
[15] |
Chandrasekhar, V., Andrews, J.G., Muharemovic, T.,
|
[16] |
Cheung, W.C., Quek, T.Q.S., Kountouris, M., 2012. Throughput optimization, spectrum allocation, and access control in two-tier femtocell networks. IEEE J. Sel. Areas Commun., 30(3):561–574. http://dx.doi.org/10.1109/JSAC.2012.120406
|
[17] |
Dely, P., Kassler, A., Bayer, N., 2011. OpenFlow for wireless mesh networks. Proc. 20th Int. Conf. on Computer Communications and Networks, p.1–6. http://dx.doi.org/10.1109/ICCCN.2011.6006100
|
[18] |
Demirkol, I., Ersoy, C., Alagöz, F., 2006. MAC protocols for wireless sensor networks: a survey. IEEE Commun. Mag., 44(4):115–121.
|
[19] |
Doppler, K., Rinne, M., Wijting, C.,
|
[20] |
Feng, M., Mao, S., 2016. Harvest the potential of massive MIMO with multi-layer techniques. IEEE Netw., in press.
|
[21] |
Feng, M., Chen, D., Wang, Z.,
|
[22] |
Feng, M., Chen, D., Wang, Z.,
|
[23] |
Feng, M., Jiang, T., Chen, D.,
|
[24] |
Feng, M., Mao, S., Jiang, T., 2015a. Duplex mode selection and channel allocation for full-duplex cognitive femtocell networks. Proc. IEEE Wireless Communications and Networking Conf., p.1900–1905. http://dx.doi.org/10.1109/WCNC.2015.7127758
|
[25] |
Feng, M., Mao, S., Jiang, T., 2015b. Joint duplex mode selection, channel allocation, and power control for fullduplex cognitive femtocell networks. Dig. Commun. Netw., 1(1):30–44. http://dx.doi.org/10.1016/j.dcan.2015.01.002
|
[26] |
Feng, M., Mao, S., Jiang, T., 2016. BOOST: base station on-off switching strategy for energy efficient massive MIMO HetNets. Proc. IEEE INFOCOM, p.1395–1403.
|
[27] |
Fodor, G., Dahlman, E., Mildh, G.,
|
[28] |
Frangoudis, P.A., Polyzos, G.C., 2014. Security and performance challenges for user-centric wireless networking. IEEE Commun. Mag., 52(12):48-55. http://dx.doi.org/10.1109/MCOM.2014.6979951
|
[29] |
Gao, P., Chen, D., Feng, M.,
|
[30] |
Golrezaei, N., Shanmugam, K., Dimakis, A.G.,
|
[31] |
Golrezaei, N., Molisch, A.F., Dimakis, A.G.,
|
[32] |
Goyal, S., Liu, P., Hua, S.,
|
[33] |
Gudipati, A., Perry, D., Li, L.E.,
|
[34] |
Guimarães, C., Corujo, D., Aguiar, R.L.,
|
[35] |
Guo, P., Jiang, T., Zhang, K.,
|
[36] |
Hoang, A.T., Liang, Y.C., 2008. Downlink channel assignment and power control for cognitive radio networks. IEEE Trans. Wirel. Commun., 7(8):3106–3117. http://dx.doi.org/10.1109/TWC.2008.070022
|
[37] |
Hoydis, J., Hosseini, K., ten Brink, S.,
|
[38] |
Hu, D., Mao, S., 2011. Multicast in femtocell networks: a successive interference cancellation approach. Proc. IEEE Global Telecommunications Conf., p.1–6. http://dx.doi.org/10.1109/GLOCOM.2011.6134124
|
[39] |
Hu, D., Mao, S., 2012. On medium grain scalable video streaming over femtocell cognitive radio networks. IEEE J. Sel. Areas Commun., 30(3):641–651. http://dx.doi.org/10.1109/JSAC.2012.120413
|
[40] |
Hu, F., Hao, Q., Bao, K., 2014. A survey on software-defined network and OpenFlow: from concept to implementation. IEEE Commun. Surv. Tutor., 16(4):2181–2206. http://dx.doi.org/10.1109/COMST.2014.2326417
|
[41] |
Huang, Y., Walsh, P.A., Li, Y.,
|
[42] |
Jararweh, Y., Ayyoub, M.A., Doulat, A.,
|
[43] |
Jiang, Z., Mao, S., 2013. Access strategy and dynamic downlink resource allocation for femtocell networks. Proc. IEEE Global Communications Conf., p.3528–3533. http://dx.doi.org/10.1109/GLOCOM.2013.6831620
|
[44] |
Jiang, Z., Mao, S., 2015. Energy delay trade-off in cloud offloading for multi-core mobile devices. IEEE Access, 3:2306–2316. http://dx.doi.org/10.1109/ACCESS.2015.2499300
|
[45] |
Kerpez, K.J., Cioffi, J.M., Ginis, G.,
|
[46] |
Kim, H., Feamster, N., 2013. Improving network management with software defined networking. IEEE Commun. Mag., 51(2):114–119. http://dx.doi.org/10.1109/MCOM.2013.6461195
|
[47] |
Kompella, S., Mao, S., Hou, Y.T.,
|
[48] |
Kreutz, D., Ramos, F.M.V., Veríssimo, P.E.,
|
[49] |
Lee, H.C., Oh, D.C., Lee, Y.H., 2010. Mitigation of interfemtocell interference with adaptive fractional frequency reuse. Proc. IEEE Int. Conf. on Communications, p.1–5. http://dx.doi.org/10.1109/ICC.2010.5502298
|
[50] |
Li, Y., Mao, S., Panwar, S.S.,
|
[51] |
Luo, T., Tan, H.P., Quek, T.Q.S., 2012. Sensor OpenFlow: enabling software-defined wireless sensor networks. IEEE Commun. Lett., 16(11):1896–1899. http://dx.doi.org/10.1109/LCOMM.2012.092812.121712
|
[52] |
Madan, R., Borran, J., Sampath, A.,
|
[53] |
Mao, S., Hou, Y.T., 2004. BeamStar: a new low-cost data routing technology for wireless sensor networks. Proc. IEEE Global Telecommunications Conf., p.2919–2924. http://dx.doi.org/10.1109/GLOCOM.2004.1378888
|
[54] |
Mao, S., Lin, S., Panwar, S.S.,
|
[55] |
Mao, S., Lin, S., Wang, Y.,
|
[56] |
Mao, S., Bushmitch, D., Narayanan, S.,
|
[57] |
Mao, S., Cheng, X., Hou, Y.,
|
[58] |
Mao, S., Hou, Y.T., Sherali, H.D.,
|
[59] |
Mitola, J., Maguire, G.Q., 1999. Cognitive radio: making software radios more personal. IEEE Pers. Commun., 6(4):13–18. http://dx.doi.org/10.1109/98.788210
|
[60] |
Nunes, B.A.A., Mendonca, M., Nguyen, X.N.,
|
[61] |
Pentikousis, K., Wang, Y., Hu, W., 2013. MobileFlow: toward software-defined mobile networks. IEEE Commun. Mag., 51(7):44–53. http://dx.doi.org/10.1109/MCOM.2013.6553677
|
[62] |
Qiang, L., Li, J., Huang, C., 2014. A software-defined network based vertical handoff scheme for heterogeneous wireless networks. Proc. IEEE Global Communications Conf., p.4671–4676. http://dx.doi.org/10.1109/GLOCOM.2014.7037545
|
[63] |
Saquib, N., Hossain, E., Le, L.B.,
|
[64] |
Schulz-Zander, J., Suresh, L., Sarrar, N.,
|
[65] |
Sezer, S., Scott-Hayward, S., Chouhan, P.K.,
|
[66] |
Son, I.K., Mao, S., Sajal, K.D., 2014a. On the design and optimization of a free space optical access network. Opt. Switch. Netw., 11(A):29–43. http://dx.doi.org/10.1016/j.osn.2013.08.004
|
[67] |
Son, I.K., Mao, S., Sajal, K.D., 2014b. On joint topology design and load balancing in free-space optical networks. Opt. Switch. Netw., 11(A):92–104. http://dx.doi.org/10.1016/j.osn.2013.08.001
|
[68] |
Tang, N., Mao, S., Kompella, S., 2016. On power control in full duplex underlay cognitive radio networks. Ad Hoc Netw., 37(2):183–194. http://dx.doi.org/10.1016/j.adhoc.2015.08.018
|
[69] |
Vestin, J., Dely, P., Kassler, A.,
|
[70] |
Wang, X., Mao, S., 2012. Distributed power control in full duplex wireless networks. Proc. IEEE Wireless Communications and Networking Conf., p.1165–1170. http://dx.doi.org/10.1109/WCNC.2015.7127634
|
[71] |
Xia, W., Wen, Y., Foh, C.,
|
[72] |
Xing, Y., Mathur, C.N., Haleem, M.A.,
|
[73] |
Xu, Y., Mao, S., 2015. User association in massive MIMO HetNets. IEEE Syst. J., in press. http://dx.doi.org/10.1109/JSYST.2015.2475702
|
[74] |
Xu, Y., Mao, S., Su, X., 2012. On adopting interleave division multiple access to two-tier femtocell networks: the uplink case. Proc. IEEE Int. Conf. on Communications, p.591–595. http://dx.doi.org/10.1109/ICC.2012.6364000
|
[75] |
Xu, Y., Yue, G., Mao, S., 2014. User grouping for massive MIMO in FDD systems: new design methods and analysis. IEEE Access, 2:947–959. http://dx.doi.org/10.1109/ACCESS.2014.2353297
|
[76] |
Ye, Q., Rong, B., Chen, Y.,
|
[77] |
Yeganeh, S.H., Tootoonchian, A., Ganjali, Y., 2013. On scalability of software-defined networking. IEEE Commun. Mag., 51(2):136–141. http://dx.doi.org/10.1109/MCOM.2013.6461198
|
[78] |
Yick, J., Mukherjee, B., Ghosal, D., 2008. Wireless sensor network survey. Comput. Netw., 52(12):2292–2330. http://dx.doi.org/10.1016/j.comnet.2008.04.002
|
[79] |
Zhang, R., Song, L., Han, Z.,
|
[80] |
Zhao, Y., Mao, S., Neel, J.O.,
|
[81] |
Zhou, H., Mao, S., Agrawal, P., 2015a. Approximation algorithms for cell association and scheduling in femtocell networks. IEEE Trans. Emerg. Topics Comput., 3(3):432–443. http://dx.doi.org/10.1109/TETC.2015.2395093
|
[82] |
Zhou, H., Hu, D., Mao, S.,
|
[83] |
Zhu, Z., Gupta, P., Wang, Q.,
|
/
〈 | 〉 |