Performance analysis of visualmarkers for indoor navigation systems
Gaetano C. LA DELFA, Salvatore MONTELEONE, Vincenzo CATANIA, Juan F. DE PAZ, Javier BAJO
Performance analysis of visualmarkers for indoor navigation systems
The massive diffusion of smartphones, the growing interest in wearable devices and the Internet of Things, and the exponential rise of location based services (LBSs) have made the problem of localization and navigation inside buildings one of the most important technological challenges of recent years. Indoor positioning systems have a huge market in the retail sector and contextual advertising; in addition, they can be fundamental to increasing the quality of life for citizens if deployed inside public buildings such as hospitals, airports, and museums. Sometimes, in emergency situations, they can make the difference between life and death. Various approaches have been proposed in the literature. Recently, thanks to the high performance of smartphones’ cameras, marker-less and marker-based computer vision approaches have been investigated. In a previous paper, we proposed a technique for indoor localization and navigation using both Bluetooth low energy (BLE) and a 2D visual marker system deployed into the floor. In this paper, we presented a qualitative performance evaluation of three 2D visual markers, Vuforia, ArUco marker, and AprilTag, which are suitable for real-time applications. Our analysis focused on specific case study of visual markers placed onto the tiles, to improve the efficiency of our indoor localization and navigation approach by choosing the best visual marker system.
Indoor localization / Visual markers / Computer vision
[1] |
Aider, O.A., Hoppenot, P., Colle, E., 2005. A modelbased method for indoor mobile robot localization using monocular vision and straight-line correspondences. Robot. Auton. Syst., 52(2):229–246.
|
[2] |
Arias, S., April, S., 2011. Visual Tag Recognition for Indoor Positioning. MS Thesis, Universitat Politècnica de Catalunya, Catalonia, Spain.
|
[3] |
Bajo, J., de Paz, J.F., Villarrubia, G.,
|
[4] |
Beauregard, S., Haas, H., 2006. Pedestrian dead reckoning: a basis for personal positioning. Proc. 3rd Workshop on Positioning, Navigation and Communication, p.27–35. http://dx.doi.org/10.1186/1687-6180-2014-65
|
[5] |
Bitsch Link, J.A., Gerdsmeier, F., Smith, P.,
|
[6] |
Buchman, A., Lung, C., 2013. Received signal strength based room level accuracy indoor localisation method. IEEE Int. Conf. on Cognitive Infocommunications, p.103–108. http://dx.doi.org/10.1109/CogInfoCom.2013.6719222
|
[7] |
Chandgadkar, A., Knottenbelt, W., 2013An Indoor Navigation System for Smartphones. MS Thesis, Imperial College London, London, UK.
|
[8] |
Constandache, I., Choudhury, R.R., Rhee, I., 2010. Towards mobile phone localization without war-driving. Proc. IEEE Int. Conf. on Computer Communications, p.1–9. http://dx.doi.org/10.1109/INFCOM.2010.5462058
|
[9] |
Danakis, C., Afgani, M., Povey, G.,
|
[10] |
Denso, W., 2010. QR-Code Standard. Available from http://www.denso-wave.com/qrcode/qrstandard-e.html
|
[11] |
Ecklbauer, B.L., 2014. A Mobile Positioning System for Android Based on Visual Markers. PhD Thesis, University of North Texas, Hagenberg, Austria.
|
[12] |
Fuchs, C., Aschenbruck, N., Martini, P.,
|
[13] |
Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J.,
|
[14] |
Han, D., Jung, S., Lee, M.,
|
[15] |
Haverinen, J., Kemppainen, A., 2009. A global selflocalization technique utilizing local anomalies of the ambient magnetic field. Int. Conf. on Robotics and Automation, p.3142–3147. http://dx.doi.org/10.1109/ROBOT.2009.5152885
|
[16] |
Jovicic, A., Li, J., Richardson, T., 2013. Visible light communication: opportunities, challenges and the path to market. IEEE Commun. Mag., 51(12):26–32. http://dx.doi.org/10.1109/MCOM.2013.6685754
|
[17] |
Kato, H., Billinghurst, M., 1999. Marker tracking and HMD calibration for a video-based augmented reality conferencing system. Proc. 2nd IEEE ACM Int. Workshop on Augmented Reality, p.85–94. http://dx.doi.org/10.1109/IWAR.1999.803809
|
[18] |
La Delfa, G.C., Catania, V., 2014. Accurate indoor navigation using smartphone, bluetooth low energy and visual tags. Proc. 2nd Conf. on Mobile and Information Technologies in Medicine, p.1–4.
|
[19] |
La Delfa, G.C., Catania, V., Monteleone, S.,
|
[20] |
Li, F., Zhao, C., Ding, G.,
|
[21] |
Liu, Y., Wang, Q., Liu, J.,
|
[22] |
Liu, Y., Dashti, M., Zhang, J., 2013. Indoor localization on mobile phone platforms using embedded inertial sensors. 10th Workshop on Positioning Navigation and Communication, p.1–5. http://dx.doi.org/10.1109/WPNC.2013.6533266
|
[23] |
Longacre, A., Hussey, R., 1997. Two Dimensional Data Encoding Structure and Symbology for Use with Optical Readers. US Patent 5 591 956.
|
[24] |
Mandal, A., Lopes, C.V., Givargis, T.,
|
[25] |
Martin, P., Ho, B.J., Grupen, N.,
|
[26] |
Mautz, R., 2012. Indoor Positioning Technologies. Südwestdeutscher Verlag für Hochschulschriften.
|
[27] |
Meingast, M., Geyer, C., Sastry, S., 2005. Geometric models of rolling-shutter cameras. Computer Vision and Pattern Recognition, ePrint Archive, arXiv:cs/0503076. Available from http://arxiv.org/abs/cs/0503076
|
[28] |
Mohan, A., Woo, G., Hiura, S.,
|
[29] |
Mulloni, A., Wagner, D., Barakonyi, I.,
|
[30] |
Naimark, L., Foxlin, E., 2002. Circular data matrix fiducial system and robust image processing for a wearable vision-inertial self-tracker. Proc. 1st Int. Symp. On Mixed and Augmented Reality, p.27–36. http://dx.doi.org/10.1109/ISMAR.2002.1115065
|
[31] |
Olson, E., 2011. AprilTag: a robust and flexible visual fiducial system. Proc. IEEE Int. Conf. on Robotics and Automation, p.3400–3407. http://dx.doi.org/10.1109/ICRA.2011.5979561
|
[32] |
Qualcomm, 2014. Qualcomm Vuforia. Available from https://developer.vuforia.com/
|
[33] |
Richardson, A., Strom, J., Olson, E., 2013. AprilCal: assisted and repeatable camera calibration. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.1814–1821. http://dx.doi.org/10.1109/IROS.2013.6696595
|
[34] |
Saito, S., Hiyama, A., Tanikawa, T.,
|
[35] |
Subbu, P., Sasidhar, K., 2011. Indoor Localization Using Magnetic Fields. PhD Thesis, University of North Texas, Texas, USA.
|
[36] |
Tarzia, S.P., Dinda, P.A., Dick, R.P.,
|
[37] |
Torres-Solis, J., Falk, T.H., Chau, T., 2010. A Review of Indoor Localization Technologies: Towards Navigational Assistance for Topographical Disorientation. In: Molina, F.J.V. (Ed.), Ambient Intelligence. In-Tech Open Access Publisher, Rijeka, Croatia, p.51–83. http://dx.doi.org/doi:10.5772/8678
|
[38] |
Villarrubia, G., Bajo, J., de Paz, J.F.,
|
[39] |
Wang, H., Sen, S., Elgohary, A.,
|
[40] |
Wicker, S.B., Bhargava, V.K., 1994. Reed-Solomon Codes and Their Applications. IEEE Press, Piscataway, NJ, USA.
|
[41] |
Zachariah, D., Jansson, M., 2012. Fusing visual tags and inertial information for indoor navigation. IEEE/ION Position Location and Navigation Symp., p.535–540. http://dx.doi.org/10.1109/PLANS.2012.6236924
|
/
〈 | 〉 |