Maximizing power saving with state transition overhead for multiple mobile subscriber stations in WiMAX

Bo LI, Sung-kwon PARK

PDF(691 KB)
PDF(691 KB)
Front. Inform. Technol. Electron. Eng ›› 2016, Vol. 17 ›› Issue (10) : 1085-1094. DOI: 10.1631/FITEE.1500314
Article
Article

Maximizing power saving with state transition overhead for multiple mobile subscriber stations in WiMAX

Author information +
History +

Abstract

In the IEEE 802.16e/m standard, three power saving classes (PSCs) are defined to save the energy of a mobile subscriber station (MSS). However, how to set the parameters of PSCs to maximize the power saving and guarantee the quality of service is not specified in the standard. Thus, many algorithms were proposed to set the PSCs in IEEE 802.16 networks. However, most of the proposed algorithms consider only the power saving for a single MSS. In the algorithms designed for multiple MSSs, the sleep state, which is set for activation of state transition overhead power, is not considered. The PSC setting for real-time connections in multiple MSSs with consideration of the state transition overhead is studied. The problem is non-deterministic polynomial time hard (NP-hard), and a suboptimal algorithm for the problem is proposed. Simulation results demonstrate that the energy saving of the proposed algorithm is higher than that of state-of-the-art algorithms and approaches the optimum limit.

Keywords

Power saving class / State transition overhead / IEEE 802.16e/m / Quality of service

Cite this article

Download citation ▾
Bo LI, Sung-kwon PARK. Maximizing power saving with state transition overhead for multiple mobile subscriber stations in WiMAX. Front. Inform. Technol. Electron. Eng, 2016, 17(10): 1085‒1094 https://doi.org/10.1631/FITEE.1500314

References

[1]
Baek, S., Son, J.J., Choi, B.D., 2009. Performance analysis of sleep mode operation for IEEE 802.16m advanced WMAN. IEEE Int. Conf. on Communications Workshops, p.1–4. http://dx.doi.org/10.1109/ICCW.2009.5208113
[2]
Broadband Wireless Access Working Group, 2006. IEEE Standard for Local and Metropolitan Area Networks: Part 16, 802.16e-2005, WG802.16. http://dx.doi.org/10.1109/IEEESTD.2006.99107
[3]
Broadband Wireless Access Working Group, 2011. IEEE Standard for Local and Metropolitan Area Networks: Part 16: Air Interface for Broadband Wireless Access Systems Amendment 3: Advanced Air Interface. WG802.16. http://dx.doi.org/10.1109/IEEESTD.2011.5765736
[4]
Chen, C.Y., Hsu, C.H., Feng, K.T., 2010. Performance analysis and comparison of sleep mode operation for IEEE 802.16m advanced broadband wireless networks. IEEE Int. Symp. on Personal Indoor and Mobile Radio Communications, p.1425–1430. http://dx.doi.org/10.1109/PIMRC.2010.5671992
[5]
Chen, T.C., Chen, J.C., 2009. Extended maximizing unavailability interval (eMUI): maximizing energy saving in IEEE 802.16e for mixing type I and type II PSCs. IEEE Commun. Lett., 13(2):151–153. http://dx.doi.org/10.1109/LCOMM.2009.081725
[6]
Chen, T.C., Chen, J.C., Chen, Y.Y., 2009. Maximizing unavailability interval for energy saving in IEEE 802.16e wireless MANs. IEEE Trans. Mob. Comput., 8(4):475–487. http://dx.doi.org/10.1109/LCOMM.2009.081725
[7]
Cookson, A.H., 1985. Particle Trap for Compressed Gas Insulated Transmission Systems. US Patent 4 554 399.
[8]
Feng, H.W., Li, H.Y., 2013. Design of predictive and dynamic energy-efficient mechanisms for IEEE 802.16e. Wirel. Pers. Commun., 68(4):1807–1835. http://dx.doi.org/10.1007/s11277-012-0551-4
[9]
Hwang, E., Kim, K.J., Son, J.J., , 2010. The power-saving mechanism with periodic traffic indications in the IEEE 802.16e/m. IEEE Trans. Veh. Techol., 59(1):319–334. http://dx.doi.org/10.1109/TVT.2009.2032193
[10]
Jin, S., Choi, M., Choi, S., 2010. Performance analysis of IEEE 802.16m sleep mode for heterogeneous traffic. IEEE Commun. Lett., 14(5):405–407. http://dx.doi.org/10.1109/LCOMM.2010.05.091730
[11]
Jin, S., Chen, X., Qiao, D., , 2011. Adaptive sleep mode management in IEEE 802.16m wireless metropolitan area networks. Comput. Netw., 55(16):3774–3783. http://dx.doi.org/10.1016/j.comnet.2011.03.002
[12]
Kalle, R., Raj, M., Das, D., 2009. A novel architecture for IEEE 802.16m subscriber station for joint power saving class management. Int. Conf. on Communication Systems and Networks, p.1–10. http://dx.doi.org/10.1109/COMSNETS.2009.4808868
[13]
Kao, C.C., Yang, S.R., Chen, H.C., 2012. A sleep-mode interleaving algorithm for layered-video multicast services in IEEE 802.16e networks. Comput. Netw., 56(16):3639–3654. http://dx.doi.org/10.1016/j.comnet.2012.07.013
[14]
Kim, R.Y., Mohanty, S., 2010. Advanced power management techniques in next-generation wireless networks. IEEE Commun. Mag., 40(3):94–102. http://dx.doi.org/10.1109/MCOM.2010.5458369
[15]
Lin, Y.W., Wang, J.S., 2013. An adaptive QoS power saving scheme for mobile WiMAX. Wirel. Pers. Commun., 69(4):1435–1462. http://dx.doi.org/10.1007/s11277-012-0644-0
[16]
Liu, W.J., Feng, K.T., Tseng, P.H., 2014. Optimality of frame aggregation-based power-saving scheduling algorithm for broadband wireless networks. IEEE Trans. Wirel. Commun., 13(2):577–591. http://dx.doi.org/10.1109/TW.2013.123013.121540
[17]
Park, Y., Hwang, G.U., 2009. An efficient power saving mechanism for delay-guaranteed services in IEEE 802.16e. IEICE Trans. Commun., E92-B(1):277–278.
[18]
Park, Y., Leem, H., Sung, D.K., 2010. Power saving mechanism in IEEE 802.16m. IEEE Vehicular Technology Conf., p.1–5. http://dx.doi.org/10.1109/VETECS.2010.5493680
[19]
Seo, J.B., Lee, S.Q., Park, N.H., , 2004. Performance analysis of sleep mode operation in IEEE 802.16e. IEEE Vehicular Technology Conf., p.1169–1173. http://dx.doi.org/10.1109/VETECF.2004.1400205
[20]
Tseng, Y.C., Chen, J.J., Yang, Y.C., 2011. Managing power saving classes in IEEE 802.16 wireless MANs: a fold-and-demultiplex method. IEEE Trans. Mob. Comput., 10(9):1237–1247. http://dx.doi.org/10.1109/TMC.2010.215
[21]
Wong, G.K.W., Zhang, Q., Tsang, D.H.K., 2010. Switching cost minimization in the IEEE 802.16e mobile WiMAX sleep mode operation. Wirel. Commun. Mob. Comput., 10(12):1576–1588. http://dx.doi.org/10.1002/wcm.875
[22]
Wu, C.Y., Ho, H.J., Lee, S.L., 2012. Minimizing energy consumption with QoS constraints over IEEE 802.16e networks. Comput. Commun., 35(14):1672–1683. http://dx.doi.org/10.1016/j.comcom.2012.06.012
[23]
Xiao, Y., 2005. Energy saving management in the IEEE 802.16e wireless MAN. IEEE Commun. Lett., 9(7):595–597.
[24]
Zhu, F., Wu, Y., Niu, Z., 2009. Delay analysis for sleep-based power saving mechanisms with downlink and uplink traffic. IEEE Commun. Lett., 13(8):615–617.

RIGHTS & PERMISSIONS

2016 Zhejiang University and Springer-Verlag Berlin Heidelberg
PDF(691 KB)

Accesses

Citations

Detail

Sections
Recommended

/