![](/develop/static/imgs/pdf.png)
Effects of residual motion compensation errors on the performance of airborne along-track interferometric SAR
Hui ZHANG, Jun HONG, Xiao-lan QIU, Ji-chuan LI, Fang-fang LI, Feng MING
Effects of residual motion compensation errors on the performance of airborne along-track interferometric SAR
Two approximations, center-beam approximation and reference digital elevation model (DEM) approximation, are used in synthetic aperture radar (SAR) motion compensation procedures. They usually introduce residual motion compensation errors for airborne single-antenna SAR imaging and SAR interferometry. In this paper, we investigate the effects of residual uncompensated motion errors, which are caused by the above two approximations, on the performance of airborne along-track interferometric SAR (ATI-SAR). The residual uncompensated errors caused by center-beam approximation in the absence and in the presence of elevation errors are derived, respectively. Airborne simulation parameters are used to verify the correctness of the analysis and to show the impacts of residual uncompensated errors on the interferometric phase errors for ATI-SAR. It is shown that the interferometric phase errors caused by the center-beam approximation with an accurate DEM could be neglected, while the interferometric phase errors caused by the center-beam approximation with an inaccurate DEM cannot be neglected when the elevation errors exceed a threshold. This research provides theoretical bases for the error source analysis and signal processing of airborne ATI-SAR.
Synthetic aperture radar (SAR) / Along-track interferometric / Motion compensation / Residual error / Interferometric phase
[1] |
Budillon, A., Pascazio, V., Schirinzi, G., 2008. Estimation of radial velocity of moving targets by along-track interferometric SAR systems. IEEE Geosci. Remote Sens. Lett., 5(3):349–353. http://dx.doi.org/10.1109/lgrs.2008.915937
|
[2] |
Chapin, E., Chen, C.W., 2009. Airborne along-track interferometry for GMTI. IEEE Aerosp. Electron. Syst. Mag., 24(5):13–18. http://dx.doi.org/10.1109/maes.2009.5109948
|
[3] |
Chen, C.W., 2004. Performance assessment of along-track interferometry for detecting ground moving targets. Proc. IEEE Radar Conf., 99–104. http://dx.doi.org/10.1109/nrc.2004.1316403
|
[4] |
Cumming, I.G., Wong, F.H., 2004. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation. Artech House, London.
|
[5] |
Dall, J., Grinder-Pedersen, J., Madsen, S.N., 1997. Calibration of a high resolution airborne 3D SAR. IEEE Int. Geoscience and Remote Sensing Symp., p.1018–1021. http://dx.doi.org/10.1109/igarss.1997.615329
|
[6] |
Fischer, J., Baumgartner, S., Reigber, A.,
|
[7] |
Fornaro, G., 1999. Trajectory deviations in airborne SAR: analysis and compensatin. IEEE Trans. Aerosp. Electron. Syst., 35(3):997–1009. http://dx.doi.org/10.1109/7.784069
|
[8] |
Fornaro, G., Franceschetti, G., Perna, S., 2005. Motion compemsatiom errors: effects on the accuracy of airborne SAR images. IEEE Trans. Aerosp. Electr. Syst., 41(4): 1338–1352. http://dx.doi.org/10.1109/taes.2005.1561888
|
[9] |
Fornaro, G., Franceschetti, G., Perna, S., 2006. On centerbeam approximation in SAR motion compensation. IEEE Geosci. Remote Sens. Lett., 3(2):276–280. http://dx.doi.org/10.1109/lgrs.2005.863391
|
[10] |
Gierull, C.H., 2003. Digital Channel Balancing of Along-Track Interferometric SAR Data. Technical Memorandum No. DRDC-OTTAWA-TM-2003-024, Defence R&D Canada-Ottawa.
|
[11] |
Glerull, C.H., 2002. Moving Target Detection with Along-Track SAR Interferometry: a Theoretical Analysis. Technical Memorandum No. DRDC-OTTAWA-TR-2002-084, Defence R&D Canada-Ottawa.
|
[12] |
Goldstein, R.M., Zebker, H.A., 1987. Interferometric radar measurement of ocean surface currents. Nature, 328(6132):707–709. http://dx.doi.org/10.1038/328707a0
|
[13] |
Gonzalez, J.H., Bachmann, M., Krieger, G.,
|
[14] |
Hirsch, O., 2001. Calibration of an airborne along-track interferometric SAR system for accurate measurement of velocities. IEEE Int. Geoscience and Remote Sensing Symp., p.558–560. http://dx.doi.org/10.1109/igarss.2001.976221
|
[15] |
Imel, D.A., 2002. AIRSAR along-track interferometry data. AIRSAR Earth Science and Applications Workshop, p.1–58.
|
[16] |
Li, F.F., Qiu, X.L., Meng, D.D.,
|
[17] |
Madsen, S.N., Skou, N., Woelders, K.,
|
[18] |
Marom, M., Goldstein, R.M., Thornton, E.B.,
|
[19] |
Moccia, A., Rufino, G., 2001. Spaceborne along-track SAR interferometry: performance analysis and mission scenarios. IEEE Trans. Aerosp. Electron. Syst., 37(1): 199–213. http://dx.doi.org/10.1109/7.913679
|
[20] |
Moreira, A., Huang, Y.H., 1994. Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation. IEEE Trans. Geosci. Remote Sens., 32(5):1029–1040. http://dx.doi.org/10.1109/36.312891
|
[21] |
Raney, R.K., 1971. Synthetic aperture imaging radar and moving targets. IEEE Trans. Aerosp. Electron. Syst., AES-7(3):499–505. http://dx.doi.org/10.1109/taes.1971.310292
|
[22] |
Reigber, A., Alivizatos, E., Potsis, A.,
|
[23] |
Rosen, P.A., Hensley, S., Joughin, I.R.,
|
[24] |
Zebker, H.A., Villasenor, J., 1992. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens., 30(5):950–959. http://dx.doi.org/10.1109/36.175330
|
[25] |
Zhang, H., Hong, J., 2013. Sensitivity analysis of along-track interferometric synthetic aperture radar (ATI-SAR) in the presence of squint. IET Int. Radar Conf., p.1–5. http://dx.doi.org/10.1049/cp.2013.0181
|
[26] |
Zhang, Y.H., 2006. Along Track Interferometry Synthetic Aperture Radar Techniques for Ground Moving Target Detection. Technical Report No. AFRL-SN-RS-TR-2005-410, Stiefvater Consultants.
|
[27] |
Zink, M., Krieger, G., Fiedler, H.,
|
/
〈 |
|
〉 |