Anovel resource optimization scheme for multi-cellOFDMArelay network

Ning DU, Fa-sheng LIU

PDF(480 KB)
PDF(480 KB)
Front. Inform. Technol. Electron. Eng ›› 2016, Vol. 17 ›› Issue (8) : 825-833. DOI: 10.1631/FITEE.1500294
Article
Article

Anovel resource optimization scheme for multi-cellOFDMArelay network

Author information +
History +

Abstract

In cellular networks, users communicate with each other through their respective base stations (BSs). Conventionally, users are assumed to be in different cells. BSs serve as decode-and-forward (DF) relay nodes to users. In addition to this type of conventional user, we recognize that there are scenarios users who want to communicate with each other are located in the same cell. This gives rise to the scenario of intra-cell communication. In this case, a BS can behave as a two-way relay to achieve information exchange instead of using conventional DF relay. We consider a multi-cell orthogonal frequency division multiple access (OFDMA) network that comprises these two types of users. We are interested in resource allocation between them. Specifically, we jointly optimize subcarrier assignment, subcarrier pairing, and power allocation to maximize the weighted sum rate. We consider the resource allocation problem at BSs when the end users’ power is fixed. We solve the problem approximately through Lagrange dual decomposition. Simulation results show that the proposed schemes outperform other existing schemes.

Keywords

Intra-cell communication / Two-way relay / Subcarrier assignment / Subcarrier pairing

Cite this article

Download citation ▾
Ning DU, Fa-sheng LIU. Anovel resource optimization scheme for multi-cellOFDMArelay network. Front. Inform. Technol. Electron. Eng, 2016, 17(8): 825‒833 https://doi.org/10.1631/FITEE.1500294

References

[1]
Boyd, S., Vandenberghe, L., 2004. Convex Optimization. Cambridge University Press, Cambridge, UK, p.215–219.
[2]
Devarajan, R., Punchihewa, A., Bhargava, V.K., 2013. Energy-aware power allocation in cooperative communication systems with imperfect CSI. IEEE Trans. Commun., 61(5):1633–1639. http://dx.doi.org/10.1109/TCOMM.2013.021513.100278
[3]
El Gamal, A., Zahedi, S., 2005. Capacity of a class of relay channels with orthogonal components. IEEE Trans. Inform. Theory, 51(5):1815–1817. http://dx.doi.org/10.1109/TIT.2005.846438
[4]
Hajiaghayi, M., Dong, M., Liang, B., 2012. Jointly optimal channel and power assignment for dual-hop multichannel multi-user relaying. IE<?Pub Caret?>EE J. Sel. Areas Commun., 30(9):1806–1814. http://dx.doi.org/10.1109/JSAC.2012.121026
[5]
Jang, Y.U., Jeong, E.R., Lee, Y.H., 2010. A two-step approach to power allocation for OFDM signals over two-way amplify-and-forward relay. IEEE Trans. Signal Process., 58(4):2426–2430. http://dx.doi.org/10.1109/TSP.2010.2040415
[6]
Laneman, J.N., Wornell, G.W., 2003. Distributed spacetime-coded protocols for exploiting cooperative diversity in wireless networks. IEEE Trans. Inform. Theory, 49(10):2415–2425. http://dx.doi.org/10.1109/TIT.2003.817829
[7]
Li, X., Zhang, Q., Zhang, G., , 2013. Joint power allocation and subcarrier pairing for cooperative OFDM AF multi-relay networks. IEEE Commun. Lett., 17(5):872–875. http://dx.doi.org/10.1109/LCOMM.2013.031913.122714
[8]
Mallick, S., Devarajan, R., Rashid, M.M., , 2013. Resource allocation for selective relaying based cellular wireless system with imperfect CSI. IEEE Trans. Commun., 61(5):1822–1834. http://dx.doi.org/10.1109/TCOMM.2013.032013.120322
[9]
Ng, D.W.K., Schober, R., 2010. Cross-layer scheduling for OFDMA amplify-and-forward relay networks. IEEE Trans. Veh. Technol., 59(3):1443–1458. http://dx.doi.org/10.1109/TVT.2009.2039814
[10]
Ng, D.W.K., Schober, R., 2011. Resource allocation and scheduling in multi-cell OFDMA systems with decodeand-forward relaying. IEEE Trans. Wirel. Commun., 10(7):2246–2258. http://dx.doi.org/10.1109/TWC.2011.042211.101183
[11]
Oyman, O., 2010. Opportunistic scheduling and spectrum reuse in relay-based cellular networks. IEEE Trans. Wirel. Commun., 9(3):1074–1085. http://dx.doi.org/10.1109/TWC.2010.03.081306
[12]
Parkvall, S., Furuska, A., Dahlman, E., 2011. Evolution of LTE toward IMT-advanced. IEEE Commun. Mag., 49(2):84–91. http://dx.doi.org/10.1109/MCOM.2011.5706315
[13]
Sendonaris, A., Erkip, E., Aazhang, B., 2003. User cooperation diversity part I: system description. IEEE Trans. Commun., 51(11):1939–1948. http://dx.doi.org/10.1109/TCOMM.2003.819238
[14]
Shim, W., Han, Y., Kim, S., 2010. Fairness-aware resource allocation in a cooperative OFDMA uplink system. IEEE Trans. Veh. Technol., 59(2):932–939. http://dx.doi.org/10.1109/TVT.2009.2037328
[15]
Sun, Y., Honig, M., 2008. Asymptotic capacity of multicarrier transmission with frequency-selective fading and limited feedback. IEEE Trans. Inform. Theory, 54(7):2879–2902. http://dx.doi.org/10.1109/TIT.2008.924666
[16]
Wang, T., Fang, Y., Vandendorpe, L., 2013. Power minimization for OFDM transmission with subcarrier-pair based opportunistic DF relaying. IEEE Commun. Lett., 17(3):471–474. http://dx.doi.org/10.1109/LCOMM.2013.012313.122159
[17]
Xu, Z., Yang, C., Li, G.Y., , 2013. Energy-efficient configuration of spatial and frequency resources in MIMO-OFDMA systems. IEEE Trans. Commun., 61(2):564–575. http://dx.doi.org/10.1109/TCOMM.2012.100512.110760
[18]
Yang, Y., Hu, H., Xu, J., , 2009. Relay technologies for WiMax and LTE-advanced mobile systems. IEEE Commun. Mag., 47(10):100–105. http://dx.doi.org/10.1109/MCOM.2009.5273815
[19]
Yang, Y., Nam, C., Shroff, N.B., 2014. A near-optimal randomized algorithm for uplink resource allocation in OFDMA systems. IEEE 12th Int. Symp. on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, p.218–225. http://dx.doi.org/10.1109/WIOPT.2014.6850302
[20]
Zhang, H., Liu, Y., Tao, M.X., 2012. Resource allocation with subcarrier pairing in OFDMA two-way relay networks. IEEE Wirel. Commun. Lett., 1(2):61–64. http://dx.doi.org/10.1109/WCL.2012.011712.110170
[21]
Zhang, X., Shen, X., Xie, L., 2014. Joint subcarrier and power allocation for cooperative communications in LTE-A advanced networks. IEEE Trans. Wirel. Commun., 13(2):658–668. http://dx.doi.org/10.1109/TWC.2013.010214.122030

RIGHTS & PERMISSIONS

2016 Zhejiang University and Springer-Verlag Berlin Heidelberg
PDF(480 KB)

Accesses

Citations

Detail

Sections
Recommended

/