Power-efficient dual-edge implicit pulse-triggered flip-flop with an embedded clock-gating scheme

Liang GENG, Ji-zhong SHEN, Cong-yuan XU

PDF(771 KB)
PDF(771 KB)
Front. Inform. Technol. Electron. Eng ›› 2016, Vol. 17 ›› Issue (9) : 962-972. DOI: 10.1631/FITEE.1500293
Article
Article

Power-efficient dual-edge implicit pulse-triggered flip-flop with an embedded clock-gating scheme

Author information +
History +

Abstract

A novel dual-edge implicit pulse-triggered flip-flop with an embedded clock-gating scheme (DIFF-CGS) is proposed, which employs a transmission-gate-logic (TGL) based clock-gating scheme in the pulse generation stage. This scheme conditionally disables the inverter chain when the input data are kept unchanged, so redundant transitions of delayed clock signals and internal nodes of the latch are all eliminated, leading to low power efficiency. Based on SMIC 65 nm technology, extensive post-layout simulation results show that the proposed DIFF-CGS gains an improvement of 41.39% to 56.21% in terms of power consumption, compared with its counterparts at 10% data-switching activity. Also, full-swing operations in both implicit pulse generation and the static latch improve the robustness of the design. Thus, DIFF-CGS is suitable for low-power applications in very-large-scale integration (VLSI) designs with low data-switching activities.

Keywords

Low power / Flip-flop / Implicit / Clock-gating scheme / Dual-edge

Cite this article

Download citation ▾
Liang GENG, Ji-zhong SHEN, Cong-yuan XU. Power-efficient dual-edge implicit pulse-triggered flip-flop with an embedded clock-gating scheme. Front. Inform. Technol. Electron. Eng, 2016, 17(9): 962‒972 https://doi.org/10.1631/FITEE.1500293

References

[1]
Geng, L., Shen, J.Z., Xu, C.Y., 2016. Design of flip-flops with clock-gating and pull-up control scheme for powerconstrained and speed-insensitive applications. IET Comput. Dig. Techn., 10(4):193–201. http://dx.doi.org/10.1049/iet-cdt.2015.0139
[2]
Goh, W.L., Yeo, K.S., Zhang, W., , 2007. A novel static dual edge-trigger flip-flop for high-frequency low-power application. IEEE Int. Symp. on Integrated Circuits, p.208–211. http://dx.doi.org/10.1109/ISICIR.2007.4441834
[3]
Hwang, Y.T., Lin, J.F., Sheu, M.H., 2012. Low-power pulse-triggered flip-flop design with conditional pulseenhancement scheme. IEEE Trans. VLSI Syst., 20(2): 361–366. http://dx.doi.org/10.1109/TVLSI.2010.2096483
[4]
Hyman, R.<?Pub Caret?>, Ranganathan, N., Bingel, T., , 2013. A clock control strategy for peak power and RMS current reduction using path clustering. IEEE Trans. VLSI Syst., 21(2):259–269. http://dx.doi.org/10.1109/TVLSI.2012.2186989
[5]
Judy, D.J., Kanchana Bhaaskaran, V.S., 2012. Energy recovery clock gating scheme and negative edge triggering flip-flop for low power applications. Int. Conf. on Devices, Circuits and Systems, p.140–143. http://dx.doi.org/10.1109/ICDCSyst.2012.6188691
[6]
Kawaguchi, H., Takayasu, S., 1998. A reduced clock-swing flip-flop (RCSFF) for 63% power reduction.IEEE J. Sol.-State Circ., 33(5):807–811. http://dx.doi.org/10.1109/4.668997
[7]
Kim, S., Han, I., Paik, S., , 2011. Pulser gating: a clock gating of pulsed-latch circuits. Proc. IEEE Asia South Pacific Design Automation Conf., p.190–195. http://dx.doi.org/10.1109/ASPDAC.2011.5722182
[8]
Klass, F., Amir, C., Das, A., , 1999. A new family of semidynamic and dynamic flip-flops with embedded logic for high-performance processors. IEEE J. Sol.-State Circ., 34(5):712–716.1http://dx.doi.org/10.1109/ASPDAC.2011.5722182
[9]
Ko, U., Balsara, P.T., 2000. High-performance energyefficient D-flip-flop circuits.IEEE Trans. VLSI Syst., 8(1):94–98. http://dx.doi.org/10.1109/92.820765
[10]
Kong, B.S., Kim, S.S., Jun, Y.H., 2001. Conditional-capture flip-flop for statistical power reduction. IEEE J. Sol.-State Circ., 36(8):1263–1271. http://dx.doi.org/10.1109/4.938376
[11]
Kulkarni, S.H., Sylvester, D., 2004. High performance level conversion for dual VDD design.IEEE Trans. VLSI Syst., 12(9):926–936. http://dx.doi.org/10.1109/TVLSI.2004.833667
[12]
Maxim, A., Gheorghe, M., 2001. A novel physical based model of deep submicron CMOS transistors mismatch for Monte Carlo SPICE simulation. IEEE Int. Symp. on Circuits and Systems, p.511–514. http://dx.doi.org/10.1109/ISCAS.2001.922097
[13]
Nedovic, N., Aleksic, M., Oklobdzija, V.G., 2002. Conditional pre-charge techniques for power-efficient dual-edge clocking. Proc. Int. Symp. on Low Power Electronics and Design, p.56–59. http://dx.doi.org/10.1109/LPE.2002.146709
[14]
Phyu, M.W., Fu, K., Goh, W.L., , 2011. Power-efficient explicit-pulsed dual-edge triggered sense-amplifier flip-flops. IEEE Trans. VLSI Syst., 19(1):1–9. http://dx.doi.org/10.1109/TVLSI.2009.2029116
[15]
Shen, J.Z., Geng, L., Wu, X.X., 2015. Low power pulsetriggered flip-flop based on clock triggering edge control technique. J. Circ. Syst. Comput., 24(07):1550094. http://dx.doi.org/10.1142/S0218126615500942
[16]
Stojanovic, V., Oklobdzija, V.G., 1999. Comparative analysis of master-slave latches and flip-flops for highperformance and low-power systems.IEEE J. Sol.-State Circ., 34(4):536–548. http://dx.doi.org/10.1109/4.753687
[17]
Strollo, A.G.M., de Caro, D., Napoli, E., , 2005. A novel high-speed sense-amplifier-based flip-flop. IEEE Trans. VLSI Syst., 13(11):1266–1274. http://dx.doi.org/10.1109/TVLSI.2005.859586
[18]
Teh, C.K., Hamada, M., Fujita, T., , 2006. Conditional data mapping flip-flops for low-power and highperformance systems. IEEE Trans. VLSI Syst., 14(12): 1379–1383. http://dx.doi.org/10.1109/TVLSI.2006.887833
[19]
Teh, C.K., Fujita, T., Hara, H., , 2011. A 77% energysaving 22-transistor single-phase-clocking D-flip-flop with adoptive-coupling configuration in 40nm CMOS. IEEE Int. Solid-State Circuits. Conf. on Digest of Technical Papers, p.338–340. http://dx.doi.org/10.1109/ISSCC.2011.5746344
[20]
Weste, N.H.E., 2006. CMOS VLSI Design: a Circuits and Systems Perspective (3rd Ed.). Pearson Education, Noida, India.
[21]
Wu, Q., Pedram, M., Wu, X., 2000. Clock-gating and its application to low power design of sequential circuits. IEEE Trans. Circ. Syst., 47(3):415–420. http://dx.doi.org/10.1109/81.841927
[22]
Wu, X.X., Shen, J.Z., 2012. Low-power explicit-pulsed triggered flip-flop with robust output. Electron. Lett., 48(24):1523–1525. http://dx.doi.org/10.1049/Fel.2012.0943
[23]
Xiang, G.P., Shen, J.Z., Wu, X.X., , 2013. Design of a low-power pulse-triggered flip-flop with conditional clock technique. IEEE Int. Symp. on Circuits and Systems, p.121–124. http://dx.doi.org/10.1109/ISCAS.2013.6571797
[24]
Zeitzoff, P.M., Chung, J.E., 2005. A perspective from the 2003 ITRS: MOSFET scaling trends, challenges, and potential solutions. IEEE Circ. Dev. Mag., 21(1):4–15. http://dx.doi.org/10.1109/MCD.2005.1388764
[25]
Zhao, P., Darwish, T.K., Bayoumi, M.A., 2004. Highperformance and low power conditional discharge flip-flop. IEEE Trans. VLSI Syst., 12(5):477–484. http://dx.doi.org/10.1109/TVLSI.2004.826192

RIGHTS & PERMISSIONS

2016 Zhejiang University and Springer-Verlag Berlin Heidelberg
PDF(771 KB)

Accesses

Citations

Detail

Sections
Recommended

/