Human hip joint center analysis for biomechanical design of a hip joint exoskeleton
Wei YANG, Can-jun YANG, Ting XU
Human hip joint center analysis for biomechanical design of a hip joint exoskeleton
We propose a new method for the customized design of hip exoskeletons based on the optimization of the humanmachine physical interface to improve user comfort. The approach is based on mechanisms designed to follow the natural trajectories of the human hip as the flexion angle varies during motion. The motions of the hip joint center with variation of the flexion angle were measured and the resulting trajectory was modeled. An exoskeleton mechanism capable to follow the hip center’s movement was designed to cover the full motion ranges of flexion and abduction angles, and was adopted in a lower extremity assistive exoskeleton. The resulting design can reduce human-machine interaction forces by 24.1% and 76.0% during hip flexion and abduction, respectively, leading to a more ergonomic and comfortable-to-wear exoskeleton system. The humanexoskeleton model was analyzed to further validate the decrease of the hip joint internal force during hip joint flexion or abduction by applying the resulting design.
Hip joint exoskeleton / Hip joint center / Compatible joint / Human-machine interaction force
[1] |
Afoke, N.Y., Byers, P.D., Hutton, W.C., 1984. The incongruous hip joint: a loading study. Ann. Rheum. Dis., 43(2):295–301. http://dx.doi.org/10.1136/ard.43.2.295
|
[2] |
Banala, S.K., Kim, S.H., Agrawal, S.K.,
|
[3] |
Camomilla, V., Cereatti, A., Vannozzi, G.,
|
[4] |
Cempini, M., de Rossi, S.M.M., Lenzi, T.,
|
[5] |
Esquenazi, A., Talaty, M., Packel, A.,
|
[6] |
Farris, R.J., Quintero, H.A., Goldfarb, M., 2011. Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals. IEEE Trans. Neur. Syst. Rehabil. Eng., 19(6):652–659. http://dx.doi.org/10.1109/tnsre.2011.2163083
|
[7] |
Fletcher, R., Powell, M.J., 1963. A rapidly convergent descent method for minimization. Comput. J., 6(2):163–168. http://dx.doi.org/10.1093/comjnl/6.2.163
|
[8] |
Gamage, S.S.H.U., Lasenby, J., 2002. New least squares solutions for estimating the average centre of rotation and the axis of rotation. J. Biomech., 35(1):87–93. http://dx.doi.org/10.1016/S0021-9290(01)00160-9
|
[9] |
Gao, B., Conrad, B.P., Zheng, N., 2007. Comparison of skin error reduction techniques for skeletal motion analysis. J. Biomech., 40(s2):S551. http://dx.doi.org/10.1016/S0021-9290(07)70541-9
|
[10] |
Greenwald, A.S., O’Connor, J.J., 1971. The transmission of load through the human hip joint. J. Biomech., 4(6):507–528. http://dx.doi.org/10.1016/0021-9290(71)90041-8
|
[11] |
Hidler, J., Nichols, D., Pelliccio, M.,
|
[12] |
Jarrasse, N., Morel, G., 2012. Connecting a human limb to an exoskeleton. IEEE Trans. Robot., 28(3):697–709. http://dx.doi.org/10.1109/TRO.2011.2178151
|
[13] |
Kang, M.J., 2004. Hip joint center location by fitting conchoid shape to the acetabular rim region of MR images. Proc. 26th Annual Int. Conf. of the IEEE. p.4477–4480. http://dx.doi.org/10.1109/iembs.2004.1404244
|
[14] |
Kawamoto, H., Sankai, Y., 2005. Power assist method based on phase sequence and muscle force condition for HAL. Adv. Robot., 19(7):717–734. http://dx.doi.org/10.1163/1568553054455103
|
[15] |
Krupicka, R., Szabo, Z., Viteckova, S.,
|
[16] |
Leardini, A., Cappozzo, A., Catani, F.,
|
[17] |
Lee, K.M., Guo, J., 2010. Kinematic and dynamic analysis of an anatomically based knee joint. J. Biomech., 43(7):1231–1236. http://dx.doi.org/10.1016/j.jbiomech.2010.02.001
|
[18] |
Lenzi, T., Vitiello, N., de Rossi, S.M.M.,
|
[19] |
Menschik, F., 1997. The hip joint as a conchoid shape. J. Biomech., 30(9):971–973. http://dx.doi.org/10.1016/S0021-9290(97)00051-1
|
[20] |
Nef, T., Riener, R., Müri, R.,
|
[21] |
Ren, Y.P., Kang, S.H., Park, H.S.,
|
[22] |
Schiele, A., van der Helm, F.C.T., 2006. Kinematic design to improve ergonomics in human machine interaction. IEEE Trans. Neur. Syst. Rehabil. Eng., 14(4):456–469. http://dx.doi.org/10.1109/TNSRE.2006.881565
|
[23] |
Stienen, A.H.A., Hekman, E.E.G., van der Helm, F.C.T.,
|
[24] |
Suzuki, K., Mito, G., Kawamoto, H.,
|
[25] |
Valiente, A., 2005. Design of a Quasi-Passive Parallel Leg Exoskeleton to Augment Load Carrying for Walking. MS Thesis, Massachusetts Institute of Technology, Boston, USA.
|
[26] |
Veneman, J.F., Ekkelenkamp, R., Kruidhof, R.,
|
[27] |
Wang, D., Lee, K.M., Guo, J.,
|
[28] |
Wu, G., Siegler, S., Allard, P.,
|
[29] |
Yan, H., Yang, C., Zhang, Y.,
|
[30] |
Zakani, S., Smith, E.J., Kunz, M.,
|
[31] |
Zoss, A.B., Kazerooni, H., Chu, A., 2006. Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Trans. Mech., 11(2):128–138. http://dx.doi.org/10.1109/TMECH.2006.871087
|
/
〈 | 〉 |