A performance analysis of multi-satellite joint geolocation
Ding WANG, Shuai WEI, Ying WU
A performance analysis of multi-satellite joint geolocation
Determining the position of an emitter on Earth by using a satellite cluster has many important applications, such as in navigation, surveillance, and remote sensing. However, in realistic situations, a number of factors, such as errors in the meas-urement of signal parameters, uncertainties regarding the position of satellites, and errors in the location of calibration sources, are known to degrade the accuracy of target localization in satellite geolocation systems. We systematically analyze the performance of multi-satellite joint geolocation based on time difference of arrival (TDOA) measurements. The theoretical analysis starts with Cramér–Rao bound (CRB) derivations for four localization scenarios under an altitude constraint and Gaussian noise assumption. In scenario 1, only the TDOA measurement errors of the emitting source are considered and the satellite positions are assumed to be perfectly estimated. In scenario 2, both the TDOA measurement errors and satellite position uncertainties are taken into account. Scenario 3 assumes that some calibration sources with accurate position information are used to mitigate the influence of satellite position perturbations. In scenario 4, several calibration sources at inaccurate locations are used to alleviate satellite position errors in target localization. Through comparing the CRBs of the four localization scenarios, some valuable’s insights are gained into the effects of various error sources on the estimation performance. Two kinds of location mean-square errors (MSE) expressions under the altitude constraint are derived through first-order perturbation analysis and the Lagrange method. The first location MSE provides the theoretical prediction when an estimator assumes that the satellite locations are accurate but in fact have errors. The second location MSE provides the localization accuracy if an estimator assumes that the known calibration source locations are precise while in fact erroneous. Simulation results are included to verify the theoretical analysis.
Satellite geolocation / Time difference of arrival (TDOA) / Cramér–Rao bound (CRB) / Calibration sources / Perfor-mance analysis
[1] |
Bardelli, R., Haworth, D., Smith, N., 1995. Interference lo-calization for the EUTELSAT satellite system. Proc. IEEE Int. Conf. on Globecom, p.1641–1651. http://dx.doi.org/10.1109/GLOCOM.1995.502690
|
[2] |
Cheung, K.W., So, H.C., Ma, W.K.,
|
[3] |
Ding, W., 2014. The geolocation performance analysis for the constrained Taylor-series iteration in the presence of saellite orbit perturbations. Sci. China Inform. Sci., 44(2):231–253. http://dx.doi.org/10.1360/112013-121
|
[4] |
Ha, T.T., Robertson, R.C., 1987. Geostationary satellite nav-igation systems. IEEE Trans. Aerosp. Electron. Syst., 23(2):247–254. http://dx.doi.org/10.1109/TAES.1987.313379
|
[5] |
Haworth, D.P., Smith, N.G., Bardelli, R.,
|
[6] |
Ho, K.C., Xu, W.W., 2004. An accurate algebraic solution for moving source location using TDOA and FDOA meas-urements. IEEE Trans. Signal Process., 52(9):2453–2463. http://dx.doi.org/10.1109/TSP.2004.831921
|
[7] |
Ho, K.C., Yang, L., 2008. On the use of a calibration emitter for source localization in the presence of sensor position uncertainty. IEEE Trans. Signal Process., 56(12):5758–5772. http://dx.doi.org/10.1109/TSP.2008.929870
|
[8] |
Ho, K.C., Lu, X.N., Kovavisaruch, L., 2007. Source localiza-tion using TDOA and FDOA measurements in the pres-ence of receiver location errors: analysis and solution. IEEE Trans. Signal Process., 55(2):684–696. http://dx.doi.org/10.1109/TSP.2006.885744
|
[9] |
Ho, K.C., Chan, Y.T., 1993. Solution and performance analy-sis of geolocation by TDOA. IEEE Trans. Aerosp. Elec-tron. Syst., 29(4):1311–1322. http://dx.doi.org/10.1109/7.259534
|
[10] |
Ho, K.C., Chan, Y.T., 1997. Geolocation of a known altitude object from TDOA and FDOA measurements. IEEE Trans. Aerosp. Electron. Syst., 33(3):770–783. http://dx.doi.org/10.1109/7.599239
|
[11] |
Huang, Y., Benesty, J., Elko, G.W.,
|
[12] |
Kovavisaruch, L., Ho, K.C., 2005. Modified Taylor-series method for source and receiver localization using TDOA measurements with erroneous receiver positions. Proc. IEEE Int. Symp. on Circuits and Systems, p.2295–2298. http://dx.doi.org/10.1109/ISCAS.2005.1465082
|
[13] |
Lee, K.E., Ahn, D.M., Lee, Y.J.,
|
[14] |
Lu, X.N., Ho, K.C., 2006a. Taylor-series technique for source localization using AOAs in the presence of sensor loca-tion errors. Proc. 4th IEEE Workshop on Sensor Array and Multichannel Processing, p.190–194. http://dx.doi.org/10.1109/SAM.2006.1706119
|
[15] |
Lu, X.N., Ho, K.C., 2006b. Analysis of the degradation in source location accuracy in the presence of sensor loca-tion error. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.925–928. http://dx.doi.org/10.1109/ICASSP.2006.1661121
|
[16] |
Marzetta, T.L., 1993. A simple derivation of the constrained multiple parameter Cramer-Rao bound. IEEE Trans. Acoust. Speech Signal Process., 41(6):2247–2249. http://dx.doi.org/10.1109/78.218151
|
[17] |
Mason, J., 2004. Algebraic two-satellite TOA/FOA position solution on an ellipsoidal Earth. IEEE Trans. Aerosp. Electron. Syst., 40(3):1087–1092. http://dx.doi.org/10.1109/TAES.2004.1337476
|
[18] |
Mušicki, D., Koch, W., 2008. Geolocation using TDOA and FDOA measurements. Proc. 11th IEEE Int. Conf. on In-formation Fusion, p.1–8.
|
[19] |
Mušicki, D., Kaune, R., Koch, W., 2010. Mobile emitter geo-location and tracking using TDOA and FDOA meas-urements. IEEE Trans. Signal Process., 58(3):1863–1874. http://dx.doi.org/10.1109/TSP.2009.2037075
|
[20] |
Niezgoda, G.H., Ho, K.C., 1994. Geolocalization by combined range difference and range rate difference measurements. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.357–360. http://dx.doi.org/10.1109/ICASSP.1994.389616
|
[21] |
Pattison, T., Chou, S.I., 2000. Sensitivity analysis of dual- satellite geolocation. IEEE Trans. Aerosp. Electron. Syst., 36(1):56–71. http://dx.doi.org/10.1109/7.826312
|
[22] |
Witzgall, H., 2014. Ground vehicle Doppler geolocation. Proc. IEEE Int. Conf. on Aerospace, p.1–8. http://dx.doi.org/10.1109/AERO.2014.6836173
|
[23] |
Wu, S.L., Luo, J.Q., 2009. Influence of position error on TDOA and FDOA measuring of dual-satellite passive location system. Proc. 3rd IEEE Int. Symp. on Microwave, Antenna, Propagation and EMC Technologies for Wire-less Communications, p.293–296. http://dx.doi.org/10.1109/MAPE.2009.5355928
|
[24] |
Yang, K., An, J.P., Bu, X.Y.,
|
[25] |
Yang, K.H., Jiang, L.Z., Luo, Z.Q., 2011. Efficient semidefi-nite relaxation for robust geolocation of unknown emitter by a satellite cluster using TDOA and FDOA measure-ments. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.2584–2587. http://dx.doi.org/10.1109/ICASSP.2011.5947013
|
[26] |
Yang, L., Ho, K.C., 2010a. On using multiple calibration emitters and their geometric effects for removing sensor position errors in TDOA localization. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.14–19. http://dx.doi.org/10.1109/ICASSP.2010.5496241
|
[27] |
Yang, L., Ho, K.C., 2010b. Alleviating sensor position error in source localization using calibration emitters at inaccu-rate locations. IEEE Trans. Signal Process., 58(1):67–83. http://dx.doi.org/10.1109/TSP.2009.2028947
|
[28] |
Yu, H., Huang, G., Gao, J., 2012. Constrained total least-squares localization algorithm using time difference of arrival and frequency difference of arrival measure-ments with sensor location uncertainties. IET Radar So-nar Navig., 6(9):891–899. http://dx.doi.org/10.1049/iet-rsn.2011.0205
|
/
〈 | 〉 |