Intelligent computing budget allocation for on-road trajectory planning based on candidate curves<FootNote> Project supported by the National Natural Science Foundation of China (No. 61273039) </FootNote>

Xiao-xin FU, Yong-heng JIANG, De-xian HUANG, Jing-chun WANG, Kai-sheng HUANG

PDF(794 KB)
PDF(794 KB)
Front. Inform. Technol. Electron. Eng ›› 2016, Vol. 17 ›› Issue (6) : 553-565. DOI: 10.1631/FITEE.1500269
Article
Article

Intelligent computing budget allocation for on-road trajectory planning based on candidate curves<FootNote> Project supported by the National Natural Science Foundation of China (No. 61273039) </FootNote>

Author information +
History +

Abstract

In this paper, on-road trajectory planning is solved by introducing intelligent computing budget allocation (ICBA) into a candidate-curve-based planning algorithm, namely, ordinal-optimization-based differential evolution (OODE). The proposed algorithm is named IOODE with ‘I’ representing ICBA. OODE plans the trajectory in two parts: trajectory curve and acceleration profile. The best trajectory curve is picked from a set of candidate curves, where each curve is evaluated by solving a subproblem with the differential evolution (DE) algorithm. The more iterations DE performs, the more accurate the evaluation will become. Thus, we intelligently allocate the iterations to individual curves so as to reduce the total number of iterations performed. Meanwhile, the selected best curve is ensured to be one of the truly top curves with a high enough probability. Simulation results show that IOODE is 20% faster than OODE while maintaining the same performance in terms of solution quality. The computing budget allocation framework presented in this paper can also be used to enhance the efficiency of other candidate-curve-based planning methods.

Keywords

Intelligent computing budget allocation / Trajectory planning / On-road planning / Intelligent vehicles / Ordinal optimization

Cite this article

Download citation ▾
Xiao-xin FU, Yong-heng JIANG, De-xian HUANG, Jing-chun WANG, Kai-sheng HUANG. Intelligent computing budget allocation for on-road trajectory planning based on candidate curves<FootNote> Project supported by the National Natural Science Foundation of China (No. 61273039) </FootNote>. Front. Inform. Technol. Electron. Eng, 2016, 17(6): 553‒565 https://doi.org/10.1631/FITEE.1500269

References

[1]
Bai, L., Jiang, Y., Huang, D., 2012. A novel two-level optimization framework based on constrained ordinal optimization and evolutionary algorithms for scheduling of multipipeline crude oil blending. Ind. Eng. Chem. Res., 51(26):9078–9093. http://dx.doi.org/10.1021/ie202224w
[2]
Bechhofer, R.E., Santner, T.J., Goldsman, D.M., 1995. Design and Analysis of Experiments for Statistical Selection, Screening, and Multiple Comparisons. Wiley, New York, USA.
[3]
Bengler, K., Dietmayer, K., Farber, B., et al., 2014. Three decades of driver assistance systems: review and future perspectives. IEEE Intell. Transp. Syst. Mag., 6(4):6–22. http://dx.doi.org/10.1109/MITS.2014.2336271
[4]
Branke, J., Chick, S.E., Schmidt, C., 2007. Selecting a selection procedure. Manag. Sci., 53(12):1916–1932. http://dx.doi.org/10.1287/mnsc.1070.0721
[5]
Chen, C., Lee, L.H., 2010. Stochastic Simulation Optimization: an Optimal Computing Budget Allocation. World Scientific, USA.
[6]
Chen, C., Yüesan, E., 2005. An alternative simulation budget allocation scheme for efficient simulation. Int. J. Simul. Process Model., 1(1/2):49–57. http://dx.doi.org/10.1504/IJSPM.2005.007113
[7]
Chen, C., Lin, J., Yücesan, E., et al., 2000. Simulation budget allocation for further enhancing the efficiency of ordinal optimization. Discr. Event Dyn. Syst., 10(3):251–270. http://dx.doi.org/10.1023/A:1008349927281
[8]
Chen, C., Chick, S.E., Lee, L.H., et al., 2015. Ranking and selection: efficient simulation budget allocation. In: Fu, M.C. (Ed.), Handbook of Simulation Optimization. Springer, New York, USA. http://dx.doi.org/10.1007/978-1-4939-1384-8_3
[9]
Chick, S.E., Inoue, K., 2001. New two-stage and sequential procedures for selecting the best simulated system. Oper. Res., 49(5):732–743. http://dx.doi.org/10.1287/opre.49.5.732.10615
[10]
Chu, K., Lee, M., Sunwoo, M., 2012. Local path planning for off-road autonomous driving with avoidance of static obstacles. IEEE Trans. Intell. Transp. Syst., 13(4):1599–1616. http://dx.doi.org/10.1109/TITS.2012.2198214
[11]
Fu, X., Jiang, Y., Huang, D., et al., 2015. A novel real-time trajectory planning algorithm for intelligent vehicles. Contr. Dec., 30(10):1751–1758 (in Chinese).
[12]
Gehrig, S.K., Stein, F.J., 2007. Collision avoidance for vehicle-following systems. IEEE Trans. Intell. Transp. Syst., 8(2):233–244. http://dx.doi.org/10.1109/TITS.2006.888594
[13]
Glaser, S., Vanholme, B., Mammar, S., et al., 2010. Maneuver-based trajectory planning for highly autonomous vehicles on real road with traffic and driver interaction. IEEE Trans. Intell. Transp. Syst., 11(3):589–606. http://dx.doi.org/10.1109/TITS.2010.2046037
[14]
Hilgert, J., Hirsch, K., Bertram, T., et al., 2003. Emergency path planning for autonomous vehicles using elastic band theory. Proc. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, p.1390–1395. http://dx.doi.org/10.1109/AIM.2003.1225546
[15]
Ho, Y., Zhao, Q., Jia, Q., 2007. Ordinal Optimization: Soft Optimization for Hard Problems. Springer, New York, USA. http://dx.doi.org/10.1007/978-0-387-68692-9
[16]
Kim, S., Nelson, B.L., 2001. A fully sequential procedure for indifference-zone selection in simulation. ACM Trans. Model. Comput. Simul., 11(3):251–273. http://dx.doi.org/10.1145/502109.502111
[17]
Köhler, S., Schreiner, B., Ronalter, S., et al., 2013. Autonomous evasive maneuvers triggered by infrastructure-based detection of pedestrian intentions. Proc. IEEE Intelligent Vehicles Symp., p.519–526. http://dx.doi.org/10.1109/IVS.2013.6629520
[18]
Kuwata, Y., Teo, J., Fiore, G., et al., 2009. Real-time motion planning with applications to autonomous urban driving. IEEE Trans. Contr. Syst. Technol., 17(5):1105–1118. http://dx.doi.org/10.1109/TCST.2008.2012116
[19]
Ma, L., Xue, J., Kawabata, K., et al., 2015. Efficient sampling-based motion planning for on-road autonomous driving. IEEE Trans. Intell. Transp. Syst., 16(4):1961–1976. http://dx.doi.org/10.1109/TITS.2015.2389215
[20]
McNaughton, M., Urmson, C., Dolan, J.M., et al., 2011. Motion planning for autonomous driving with a conformal spatiotemporal lattice. Proc. IEEE Int. Conf. on Robotics and Automation, p.4889–4895. http://dx.doi.org/10.1109/ICRA.2011.5980223
[21]
Montemerlo, M., Becker, J., Bhat, S., et al., 2008. Junior: the Stanford entry in the urban challenge. J. Field Robot., 25(9):569–597. http://dx.doi.org/10.1002/rob.20258
[22]
Papadimitriou, I., Tomizuka, M., 2003. Fast lane changing computations using polynomials. Proc. American Control Conf., p.48–53. http://dx.doi.org/10.1109/ACC.2003.1238912
[23]
Reif, J.H., 1979. Complexity of the mover’s problem and generalizations. Proc. 20th Annual Symp. on Foundations of Computer Science, p.421–427. http://dx.doi.org/10.1109/SFCS.1979.10
[24]
Urmson, C., Anhalt, J., Bagnell, D., et al., 2008. Autonomous driving in urban environments: boss and the urban challenge. J. Field Robot., 25(8):425–466. http://dx.doi.org/10.1002/rob.20255
[25]
Ziegler, J., Stiller, C., 2009. Spatiotemporal state lattices for fast trajectory planning in dynamic on-road driving scenarios. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.1879–1884. http://dx.doi.org/10.1109/IROS.2009.5354448

RIGHTS & PERMISSIONS

2016 Zhejiang University and Springer-Verlag Berlin Heidelberg
PDF(794 KB)

Accesses

Citations

Detail

Sections
Recommended

/