Anovel approach of noise statistics estimate using H∞ filter in target tracking
Xie WANG, Mei-qin LIU, Zhen FAN, Sen-lin ZHANG
Anovel approach of noise statistics estimate using H∞ filter in target tracking
Noise statistics are essential for estimation performance. In practical situations, however, a priori information of noise statistics is often imperfect. Previous work on noise statistics identification in linear systems still requires initial prior knowledge of the noise. A novel approach is presented in this paper to solve this paradox. First, we apply the H∞ filter to obtain the system state estimates without the common assumptions about the noise in conventional adaptive filters. Then by applying state estimates obtained from the H∞ filter, better estimates of the noise mean and covariance can be achieved, which can improve the performance of estimation. The proposed approach makes the best use of the system knowledge without a priori information with modest computation cost, which makes it possible to be applied online. Finally, numerical examples are presented to show the efficiency of this approach.
Noise estimate / H∞ filter / Target tracking
[1] |
Alouani, A.T., Blair, W.D., 1993. Use of a kinematic constraint in tracking constant speed, maneuvering targets. IEEE Trans. Autom. Contr., 38(7):1107–1111. http://dx.doi.org/10.1109/9.231465
|
[2] |
Alspach, D.L., Scharf, L.L., Abiri, A., 1974. A Bayesian solution to the problem of state estimation in an unknown noise environment. Int. J. Contr., 19(2):265–287. http://dx.doi.org/10.1080/00207177408932628
|
[3] |
Assa, A., Janabi-Sharifi, F., 2014. A robust vision-based sensor fusion approach for real-time pose estimation. IEEE Trans. Cybern., 44(2):217–227. http://dx.doi.org/10.1109/TCYB.2013.2252339
|
[4] |
Banavar, R.N., 1992. A Game Theoretic Approach to Linear Dynamic Estimation. PhD Thesis, Texas University, Austin, USA.
|
[5] |
Bavdekar, V.A., Deshpande, A.P., Patwardhan, S.C., 2011. Identification of process and measurement noise covariance for state and parameter estimation using extended Kalman filter. J. Process Contr., 21(4):585–601. http://dx.doi.org/10.1016/j.jprocont.2011.01.001
|
[6] |
Bélanger, P.R., 1974. Estimation of noise covariance matrices for a linear time-varying stochastic process. Automatica, 10(3):267–275. http://dx.doi.org/10.1016/0005-1098(74)90037-5
|
[7] |
Bohlin, T., 1976. Four cases of identification of changing systems. Math. Sci. Eng., 126:441–518. http://dx.doi.org/10.1016/S0076-5392(08)60878-4
|
[8] |
Carew, B., Belanger, P., 1973. Identification of optimum filter steady-state gain for systems with unknown noise covariances. IEEE Trans. Autom. Contr., 18(6):582–587. http://dx.doi.org/10.1109/TAC.1973.1100420
|
[9] |
Duník, J., Straka, O., Šimandl, M., 2015. Estimation of noise covariance matrices for linear systems with nonlinear measurements. Proc. 17th Symp. on System Identification, p.1130–1135. http://dx.doi.org/10.1016/j.ifacol.2015.12.283
|
[10] |
Feng, B., Fu, M., Ma, H.,
|
[11] |
Fu, X., Jia, Y., Du, J.,
|
[12] |
Gales, M.J.F., 2009. Acoustic modelling for speech recognition: hidden Markov models and beyond? Proc. IEEE Workshop on Automatic Speech Recognition & Understanding, p.44. http://dx.doi.org/10.1109/ASRU.2009.5372953
|
[13] |
Jiang, T.Y., Liu, M.Q., Wang, X.,
|
[14] |
Jwo, D.J., Huang, C.M., 2007. An adaptive fuzzy strong tracking Kalman filter for GPS/INS navigation. Proc. 33rd Annual Conf. of the IEEE Industrial Electronics Society, p.2266–2271. http://dx.doi.org/10.1109/IECON.2007.4460302
|
[15] |
Li, W., Jia, Y., 2010. Distributed interacting multiple model H∞ filtering fusion for multiplatform maneuvering target tracking in clutter. Signal Process., 90(5):1655–1668. http://dx.doi.org/10.1016/j.sigpro.2009.11.016
|
[16] |
Li, X.R., Bar-Shalom, Y., 1994. A recursive multiple model approach to noise identification. IEEE Trans. Aerosp. Electron. Syst., 30(3):671–684. http://dx.doi.org/10.1109/7.303738
|
[17] |
Li, X.R., Jilkov, V.P., 2005. Survey of maneuvering target tracking. Part V: multiple-model methods. IEEE Trans. Aerosp. Electron. Syst., 41(4):1255–1321. http://dx.doi.org/10.1109/TAES.2005.1561886
|
[18] |
Mazor, E., Averbuch, A., Bar-Shalom, Y.,
|
[19] |
Mehra, R., 1972. Approaches to adaptive filtering. IEEE Trans. Autom. Contr., 17(5):693–698. http://dx.doi.org/10.1109/TAC.1972.1100100
|
[20] |
Myers, K., Tapley, B., 1976. Adaptive sequential estimation with unknown noise statistics. IEEE Trans. Autom. Contr., 21(4):520–523. http://dx.doi.org/10.1109/TAC.1976.1101260
|
[21] |
Odelson, B.J., Rajamani, M.R., Rawlings, J.B., 2006. A new autocovariance least-squares method for estimating noise covariances. Automatica, 42(2):303–308. http://dx.doi.org/10.1016/j.automatica.2005.09.006
|
[22] |
Rabiner, L.R., 1990. A tutorial on hidden Markov models and selected applications in speech recognition. In:Waibel, A., Lee, K.F. (Eds.), Readings in Speech Recognition. Morgan Kaufmann Publishers Inc., USA, p.267–296.
|
[23] |
Rawicz, P.L., 2000. H∞/H2/Kalman Filtering of Linear Dynamical Systems via Variational Techniques with Applications to Target Tracking. PhD Thesis, Drexel University, Philadelphia, USA.
|
[24] |
Shen, X., Deng, L., 1997. Game theory approach to discrete H∞ filter design. IEEE Trans. Signal Process., 45(4):1092–1095. http://dx.doi.org/10.1109/78.564201
|
[25] |
Simon, D., 2006. Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches. Wiley, New York, USA.
|
[26] |
Yadav, A., Naik, N., Ananthasayanam, M.R.,
|
[27] |
Yaesh, I., Shaked, U., 1991. A transfer function approach to the problems of discrete-time systems: H∞-optimal linear control and filtering. IEEE Trans. Autom. Contr., 36(11):1264–1271. http://dx.doi.org/10.1109/9.100935
|
/
〈 | 〉 |