Anovel approach of noise statistics estimate using H∞ filter in target tracking

Xie WANG, Mei-qin LIU, Zhen FAN, Sen-lin ZHANG

PDF(397 KB)
PDF(397 KB)
Front. Inform. Technol. Electron. Eng ›› 2016, Vol. 17 ›› Issue (5) : 449-457. DOI: 10.1631/FITEE.1500262

Anovel approach of noise statistics estimate using H∞ filter in target tracking

Author information +
History +

Abstract

Noise statistics are essential for estimation performance. In practical situations, however, a priori information of noise statistics is often imperfect. Previous work on noise statistics identification in linear systems still requires initial prior knowledge of the noise. A novel approach is presented in this paper to solve this paradox. First, we apply the H∞ filter to obtain the system state estimates without the common assumptions about the noise in conventional adaptive filters. Then by applying state estimates obtained from the H∞ filter, better estimates of the noise mean and covariance can be achieved, which can improve the performance of estimation. The proposed approach makes the best use of the system knowledge without a priori information with modest computation cost, which makes it possible to be applied online. Finally, numerical examples are presented to show the efficiency of this approach.

Keywords

Noise estimate / H∞ filter / Target tracking

Cite this article

Download citation ▾
Xie WANG, Mei-qin LIU, Zhen FAN, Sen-lin ZHANG. Anovel approach of noise statistics estimate using H∞ filter in target tracking. Front. Inform. Technol. Electron. Eng, 2016, 17(5): 449‒457 https://doi.org/10.1631/FITEE.1500262

References

[1]
Alouani, A.T., Blair, W.D., 1993. Use of a kinematic constraint in tracking constant speed, maneuvering targets. IEEE Trans. Autom. Contr., 38(7):1107–1111. http://dx.doi.org/10.1109/9.231465
[2]
Alspach, D.L., Scharf, L.L., Abiri, A., 1974. A Bayesian solution to the problem of state estimation in an unknown noise environment. Int. J. Contr., 19(2):265–287. http://dx.doi.org/10.1080/00207177408932628
[3]
Assa, A., Janabi-Sharifi, F., 2014. A robust vision-based sensor fusion approach for real-time pose estimation. IEEE Trans. Cybern., 44(2):217–227. http://dx.doi.org/10.1109/TCYB.2013.2252339
[4]
Banavar, R.N., 1992. A Game Theoretic Approach to Linear Dynamic Estimation. PhD Thesis, Texas University, Austin, USA.
[5]
Bavdekar, V.A., Deshpande, A.P., Patwardhan, S.C., 2011. Identification of process and measurement noise covariance for state and parameter estimation using extended Kalman filter. J. Process Contr., 21(4):585–601. http://dx.doi.org/10.1016/j.jprocont.2011.01.001
[6]
Bélanger, P.R., 1974. Estimation of noise covariance matrices for a linear time-varying stochastic process. Automatica, 10(3):267–275. http://dx.doi.org/10.1016/0005-1098(74)90037-5
[7]
Bohlin, T., 1976. Four cases of identification of changing systems. Math. Sci. Eng., 126:441–518. http://dx.doi.org/10.1016/S0076-5392(08)60878-4
[8]
Carew, B., Belanger, P., 1973. Identification of optimum filter steady-state gain for systems with unknown noise covariances. IEEE Trans. Autom. Contr., 18(6):582–587. http://dx.doi.org/10.1109/TAC.1973.1100420
[9]
Duník, J., Straka, O., Šimandl, M., 2015. Estimation of noise covariance matrices for linear systems with nonlinear measurements. Proc. 17th Symp. on System Identification, p.1130–1135. http://dx.doi.org/10.1016/j.ifacol.2015.12.283
[10]
Feng, B., Fu, M., Ma, H., , 2014. Kalman filter with recursive covariance estimation—sequentially estimating process noise covariance. IEEE Trans. Ind. Electron., 61(11):6253–6263. http://dx.doi.org/10.1109/TIE.2014.2301756
[11]
Fu, X., Jia, Y., Du, J., , 2013. H∞ filtering with diagonal interacting multiple model algorithm for maneuvering target tracking. Proc. American Control Conf., p.6187–6192.
[12]
Gales, M.J.F., 2009. Acoustic modelling for speech recognition: hidden Markov models and beyond? Proc. IEEE Workshop on Automatic Speech Recognition & Understanding, p.44. http://dx.doi.org/10.1109/ASRU.2009.5372953
[13]
Jiang, T.Y., Liu, M.Q., Wang, X., , 2014. An efficient measurement-driven sequential Monte Carlo multi-Bernoulli filter for multi-target filtering. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 15(6):445–457. http://dx.doi.org/10.1631/jzus.C1400025
[14]
Jwo, D.J., Huang, C.M., 2007. An adaptive fuzzy strong tracking Kalman filter for GPS/INS navigation. Proc. 33rd Annual Conf. of the IEEE Industrial Electronics Society, p.2266–2271. http://dx.doi.org/10.1109/IECON.2007.4460302
[15]
Li, W., Jia, Y., 2010. Distributed interacting multiple model H∞ filtering fusion for multiplatform maneuvering target tracking in clutter. Signal Process., 90(5):1655–1668. http://dx.doi.org/10.1016/j.sigpro.2009.11.016
[16]
Li, X.R., Bar-Shalom, Y., 1994. A recursive multiple model approach to noise identification. IEEE Trans. Aerosp. Electron. Syst., 30(3):671–684. http://dx.doi.org/10.1109/7.303738
[17]
Li, X.R., Jilkov, V.P., 2005. Survey of maneuvering target tracking. Part V: multiple-model methods. IEEE Trans. Aerosp. Electron. Syst., 41(4):1255–1321. http://dx.doi.org/10.1109/TAES.2005.1561886
[18]
Mazor, E., Averbuch, A., Bar-Shalom, Y., , 1998. Interacting multiple model methods in target tracking: a survey. IEEE Trans. Aerosp. Electron. Syst., 34(1):103–123. http://dx.doi.org/10.1109/7.640267
[19]
Mehra, R., 1972. Approaches to adaptive filtering. IEEE Trans. Autom. Contr., 17(5):693–698. http://dx.doi.org/10.1109/TAC.1972.1100100
[20]
Myers, K., Tapley, B., 1976. Adaptive sequential estimation with unknown noise statistics. IEEE Trans. Autom. Contr., 21(4):520–523. http://dx.doi.org/10.1109/TAC.1976.1101260
[21]
Odelson, B.J., Rajamani, M.R., Rawlings, J.B., 2006. A new autocovariance least-squares method for estimating noise covariances. Automatica, 42(2):303–308. http://dx.doi.org/10.1016/j.automatica.2005.09.006
[22]
Rabiner, L.R., 1990. A tutorial on hidden Markov models and selected applications in speech recognition. In:Waibel, A., Lee, K.F. (Eds.), Readings in Speech Recognition. Morgan Kaufmann Publishers Inc., USA, p.267–296.
[23]
Rawicz, P.L., 2000. H∞/H2/Kalman Filtering of Linear Dynamical Systems via Variational Techniques with Applications to Target Tracking. PhD Thesis, Drexel University, Philadelphia, USA.
[24]
Shen, X., Deng, L., 1997. Game theory approach to discrete H∞ filter design. IEEE Trans. Signal Process., 45(4):1092–1095. http://dx.doi.org/10.1109/78.564201
[25]
Simon, D., 2006. Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches. Wiley, New York, USA.
[26]
Yadav, A., Naik, N., Ananthasayanam, M.R., , 2012. A constant gain Kalman filter approach to target tracking in wireless sensor networks. Proc. 7th IEEE Int. Conf. on Industrial and Information Systems, p.1–7. http://dx.doi.org/10.1109/ICIInfS.2012.6304803
[27]
Yaesh, I., Shaked, U., 1991. A transfer function approach to the problems of discrete-time systems: H∞-optimal linear control and filtering. IEEE Trans. Autom. Contr., 36(11):1264–1271. http://dx.doi.org/10.1109/9.100935

RIGHTS & PERMISSIONS

2016 Zhejiang University and Springer-Verlag Berlin Heidelberg
PDF(397 KB)

Accesses

Citations

Detail

Sections
Recommended

/