Shadow obstacle model for realistic corner-turning behavior in crowd simulation

Gao-qi HE, Yi JIN, Qi CHEN, Zhen LIU, Wen-hui YUE, Xing-jian LU

PDF(1344 KB)
PDF(1344 KB)
Front. Inform. Technol. Electron. Eng ›› 2016, Vol. 17 ›› Issue (3) : 200-211. DOI: 10.1631/FITEE.1500253

Shadow obstacle model for realistic corner-turning behavior in crowd simulation

Author information +
History +

Abstract

This paper describes a novel model known as the shadow obstacle model to generate a realistic corner-turning behavior in crowd simulation. The motivation for this model comes from the observation that people tend to choose a safer route rather than a shorter one when turning a corner. To calculate a safer route, an optimization method is proposed to generate the corner-turning rule that maximizes the viewing range for the agents. By combining psychological and physical forces together, a full crowd simulation framework is established to provide a more realistic crowd simulation. We demonstrate that our model produces a more realistic corner-turning behavior by comparison with real data obtained from the experiments. Finally, we perform parameter analysis to show the believability of our model through a series of experiments.

Keywords

Corner-turning behavior / Crowd simulation / Safety awareness / Rule-based model

Cite this article

Download citation ▾
Gao-qi HE, Yi JIN, Qi CHEN, Zhen LIU, Wen-hui YUE, Xing-jian LU. Shadow obstacle model for realistic corner-turning behavior in crowd simulation. Front. Inform. Technol. Electron. Eng, 2016, 17(3): 200‒211 https://doi.org/10.1631/FITEE.1500253

References

[1]
Béhé, F., Galland, S., Gaud, N., , 2014. An ontologybased metamodel for multiagent-based simulations. Simul. Model. Pract. Theory, 40:64–85. http://dx.doi.org/10.1016/j.simpat.2013.09.002
[2]
Cui, Y., Qin, G., 2010. Intelligent path planning in 3D scene. Proc. Int. Conf. on Computer Application and System Modeling, p.579–583. http://dx.doi.org/10.1109/ICCASM.2010.5620400
[3]
Curtis, S., Snape, J., Manocha, D., 2012. Way portals: efficient multi-agent navigation with line-segment goals. Proc. ACM SIGGRAPH Symp. on Interactive 3D Graphics and Games, p.15–22. http://dx.doi.org/10.1145/2159616.2159619
[4]
Fiorini, P., Shiller, Z., 1998. Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res., 17(7):760–772. http://dx.doi.org/10.1177/027836499801700706
[5]
Guy, S.J., Chhugani, J., Kim, C., , 2009. ClearPath: highly parallel collision avoidance for multi-agent simulation. Proc. ACM SIGGRAPH/Eurographics Symp. on Computer Animation, p.177–187. http://dx.doi.org/10.1145/1599470.1599494
[6]
Hashimoto, K., Yoshimi, T., Mizukawa, M., , 2013. A study of collision avoidance between service robot and human at corner—analysis of human behavior at corner. Proc. 10th Int. Conf. on Ubiquitous Robots and Ambient Intelligence, p.383–384. http://dx.doi.org/10.1109/URAI.2013.6677293
[7]
Helbing, D., Farkas, I., Vicsek, T., 2000. Simulating dynamical features of escape panic. Nature, 407(6803):487–490. http://dx.doi.org/10.1038/35035023
[8]
Jin, X., Xu, J., Wang, C.L., , 2008. Interactive control of large-crowd navigation in virtual environments using vector fields. IEEE Comput. Graph. Appl., 28(6):37–46. http://dx.doi.org/10.1109/MCG.2008.117
[9]
Kim, S., Guy, S.J., Manocha, D., 2013. Velocity-based modeling of physical interactions in multi-agent simulations. Proc. 12th ACM SIGGRAPH/Eurographics Symp. on Computer Animation, p.125–133. http://dx.doi.org/10.1145/2485895.2485910
[10]
Moussaïd, M., Helbing, D., Theraulaz, G., 2011. How simple rules determine pedestrian behavior and crowd disasters. PNAS, 108(17):6884–6888. http://dx.doi.org/10.1073/pnas.1016507108
[11]
Patil, S., van den Berg, J., Curtis, S., , 2011. Directing crowd simulations using navigation fields. IEEE Trans. Visual. Comput. Graph., 17(2):244–254. http://dx.doi.org/10.1109/TVCG.2010.33
[12]
Pelechano, N., Allbeck, J.M., Badler, N.I., 2008. Virtual Crowds: Methods, Simulation, and Control. Morgan & Claypool Publishers, USA. http://dx.doi.org/10.2200/s00123ed1v01y200808cgr008
[13]
Reynolds, C.W., 1999. Steering behaviors for autonomous characters. Game Developers Conf., p.763–782.
[14]
Rojas, F.A., Park, J.H., Yang, H.S., 2013. Group agent-based steering for the realistic corner turning and group movement of pedestrians in a crowd simulation. Proc. Computer Animation and Social Agents, p.1–4.
[15]
Shao, W., Terzopoulos, D., 2005. Autonomous pedestrians. Proc. ACM SIGGRAPH/Eurographics Symp. on Computer Animation, p.19–28. http://dx.doi.org/10.1145/1073368.1073371
[16]
Snape, J., Guy, S.J., Lin, M.C., , 2012. Reciprocal collision avoidance and multi-agent navigation for video games. Workshops at the 26th AAAI Conf. on Artificial Intelligence, p.49–52.
[17]
Snook, G., 2000. Simplified 3D movement and pathfinding using navigation meshes. Game Program. Gems, 1:288–304.
[18]
Thalmann, D., Grillon, H., Maim, J., , 2009. Challenges in crowd simulation. Proc. Int. Conf. on CyberWorlds, p.1–12. http://dx.doi.org/10.1109/CW.2009.23
[19]
van den Berg, J., Lin, M., Manocha, D., 2008. Reciprocal velocity obstacles for real-time multi-agent navigation. Proc. IEEE Int. Conf. on Robotics and Automation, p.1928–1935. http://dx.doi.org/10.1109/ROBOT.2008.4543489
[20]
van Toll, W.G., Cook, A.F., Geraerts, R., 2012. Real-time density-based crowd simulation. Comput. Animat. Virt. Worlds, 23(1):59–69. http://dx.doi.org/10.1002/cav.1424
[21]
Watt, A., 1993. 3D Computer Graphics. Addison-Wesley, UK.
[22]
Zhou, S., Chen, D., Cai, W., , 2010. Crowd modeling and simulation technologies. ACM Trans. Model. Comput. Simul., 20(4):20.1–20.35. http://dx.doi.org/10.1145/1842722.1842725
PDF(1344 KB)

Accesses

Citations

Detail

Sections
Recommended

/