Torque characteristics in a large permanent magnet synchronous generator with stator radial ventilating air ducts
He HAO, Wei-zhong FEI, Dong-min MIAO, Meng-jia JIN, Jian-xin SHEN
Torque characteristics in a large permanent magnet synchronous generator with stator radial ventilating air ducts
In this study, we investigated the torque characteristics of large low-speed direct-drive permanent magnet synchronous generators with stator radial ventilating air ducts for offshore wind power applications. Magnet shape optimization was used first to improve the torque characteristics using two-dimensional finite element analysis (FEA) in a permanent magnet synchronous generator with a common stator. The rotor step skewing technique was then employed to suppress the impacts of mechanical tolerances and defects, which further improved the torque quality of the machine. Comprehensive three-dimensional FEA was used to evaluate accurately the overall effects of stator radial ventilating air ducts and rotor step skewing on torque features. The influences of the radial ventilating ducts in the stator on torque characteristics, such as torque pulsation and average torque in the machine with and without rotor step skewing techniques, were comprehensively investigated using three-dimensional FEA. The results showed that stator radial ventilating air ducts could not only reduce the average torque but also increase the torque ripple in the machine. Furthermore, the torque ripple of the machine under certain load conditions may even be increased by rotor step skewing despite a reduction in cogging torque.
Permanent magnet synchronous generator (PMSG) / Radial ventilating air duct / Torque ripple / Step skewing / Magnet shape optimization / Finite element analysis / Wind power
[1] |
Ashabani, M., Mohamed, Y.A.R.I., 2011. Multiobjective shape optimization of segmented pole permanentmagnet synchronous machines with improved torque characteristics. IEEE Trans. Magn., 47(4):795–804. http://dx.doi.org/10.1109/TMAG.2010.2104327
|
[2] |
Atallah, K., Wang, J., Howe, D., 2003. Torque-ripple minimization in modular permanent-magnet brushless machines. IEEE Trans. Ind. Appl., 39(6):1689–1695. http://dx.doi.org/10.1109/TIA.2003.818986
|
[3] |
Bianchi, N., Bolognani, S., 2002. Design techniques for reducing the cogging torque in surface-mounted PM motors. IEEE Trans. Ind. Appl., 38(5):1259–1265. http://dx.doi.org/10.1109/TIA.2002.802989
|
[4] |
Boukais, B., Zeroug, H., 2010. Magnet segmentation for commutation torque ripple reduction in a brushless DC motor drive. IEEE Trans. Magn., 46(11):3909–3919. http://dx.doi.org/10.1109/TMAG.2010.2057439
|
[5] |
Chen, H.S., Dorrell, D.G., Tsai, M.C., 2010. Design and operation of interior permanent-magnet motors with two axial segments and high rotor saliency. IEEE Trans. Magn., 46(9):3664–3675. http://dx.doi.org/10.1109/TMAG.2010.2048037
|
[6] |
Chen, N.N., Ho, S.L., Fu, W.N., 2010. Optimization of permanent magnet surface shapes of electric motors for minimization of cogging torque using FEM. IEEE Trans. Magn., 46(6):2478–2481. http://dx.doi.org/10.1109/TMAG.2010.2044764
|
[7] |
Chu, W.Q., Zhu, Z.Q., 2013. Reduction of on-load torque ripples in permanent magnet synchronous machines by improved skewing. IEEE Trans. Magn., 49(7):3822–3825. http://dx.doi.org/10.1109/TMAG.2013.2247381
|
[8] |
Fei, W.Z., Luk, P.C.K., 2009. An improved model for the back-EMF and cogging torque characteristics of a novel axial flux permanent magnet synchronous machine with a segmental laminated stator. IEEE Trans. Magn., 45(10):4609–4612. http://dx.doi.org/10.1109/TMAG.2009.2024127
|
[9] |
Fei, W.Z., Luk, P.C.K., 2010. A new technique of cogging torque suppression in direct-drive permanent-magnet brushless machines. IEEE Trans. Ind. Appl., 46(4): 1332–1340. http://dx.doi.org/10.1109/TIA.2010.2049551
|
[10] |
Fei, W.Z., Luk, P.C.K., 2012. Torque ripple reduction of a direct-drive permanent-magnet synchronous machine by material-efficient axial pole pairing. IEEE Trans. Ind. Electron., 59(6):2601–2611. http://dx.doi.org/10.1109/TIE.2011.2158048
|
[11] |
Fei, W.Z., Luk, P.C.K., Shen, J.X., 2012. Torque analysis of permanent-magnet flux switching machines with rotor step skewing. IEEE Trans. Magn., 48(10):2664–2673. http://dx.doi.org/10.1109/TMAG.2012.2198223
|
[12] |
Fei, W.Z., Luk, P.C.K., Wu, D.,
|
[13] |
Güemes, J.A., Iraolagoitia, A.A., Del Hoyo, J.I.,
|
[14] |
Han, S.H., Jahns, T.M., Soong, W.L.,
|
[15] |
Islam, M.S., Mir, S., Sebastian, T.,
|
[16] |
Islam, R., Husain, I., Fardoun, A.,
|
[17] |
Jahns, T.M., Soong, W.L., 1996. Pulsating torque minimization techniques for permanent magnet AC motor drives—a review. IEEE Trans. Ind. Electron., 43(2): 321–330. http://dx.doi.org/10.1109/41.491356
|
[18] |
Lateb, R., Takorabet, N., Meibody-Tabar, F., 2006. Effect of magnet segmentation on the cogging torque in surface-mounted permanent-magnet motors. IEEE Trans. Magn., 42(3):442–445. http://dx.doi.org/10.1109/TMAG.2005.862756
|
[19] |
Li, T., Slemon, G., 1988. Reduction of cogging torque in permanent magnet motors. IEEE Trans. Magn., 24(6):2901–2903. http://dx.doi.org/10.1109/20.92282
|
[20] |
Pang, Y., Zhu, Z.Q., Howe, D., 2005. Self-shielding magnetized vs. shaped parallel-magnetized PM brushless AC motors. . KIEE Int Trans. Electr. Mach. Energy Conv. Syst., 5-B(1):13–19.
|
[21] |
Pyrhonen, J., Ruuskanen, V., Nerg, J.,
|
[22] |
Ruuskanen, V., Nerg, J., Pyrhonen, J., 2011. Effect of lamination stack ends and radial cooling channels on noload voltage and inductances of permanent-magnet synchronous machines. IEEE Trans. Magn., 47(11):4643–4649. http://dx.doi.org/10.1109/TMAG.2011.2158233
|
[23] |
Ruuskanen, V., Nerg, J., Niemelä, M.,
|
[24] |
Sopanen, J., Ruuskanen, V., Nerg, J.,
|
[25] |
Tapia, J.A., Pyrhonen, J., Puranen, J.,
|
[26] |
Wang, Y., Jin, M.J., Fei, W.Z.,
|
[27] |
Yang, Y., Wang, X., Zhang, R.,
|
[28] |
Zhu, Z.Q., Howe, D., 2000. Influence of design parameters on cogging torque in permanent magnet machines. IEEE Trans. Energy Conv., 15(4):407–412. http://dx.doi.org/10.1109/60.900501
|
[29] |
Zhu, Z.Q., Ruangsinchaiwanich, S., Ishak, D.,
|
/
〈 | 〉 |