Torque characteristics in a large permanent magnet synchronous generator with stator radial ventilating air ducts

He HAO, Wei-zhong FEI, Dong-min MIAO, Meng-jia JIN, Jian-xin SHEN

PDF(2341 KB)
PDF(2341 KB)
Front. Inform. Technol. Electron. Eng ›› 2016, Vol. 17 ›› Issue (8) : 814-824. DOI: 10.1631/FITEE.1500238
Article
Article

Torque characteristics in a large permanent magnet synchronous generator with stator radial ventilating air ducts

Author information +
History +

Abstract

In this study, we investigated the torque characteristics of large low-speed direct-drive permanent magnet synchronous generators with stator radial ventilating air ducts for offshore wind power applications. Magnet shape optimization was used first to improve the torque characteristics using two-dimensional finite element analysis (FEA) in a permanent magnet synchronous generator with a common stator. The rotor step skewing technique was then employed to suppress the impacts of mechanical tolerances and defects, which further improved the torque quality of the machine. Comprehensive three-dimensional FEA was used to evaluate accurately the overall effects of stator radial ventilating air ducts and rotor step skewing on torque features. The influences of the radial ventilating ducts in the stator on torque characteristics, such as torque pulsation and average torque in the machine with and without rotor step skewing techniques, were comprehensively investigated using three-dimensional FEA. The results showed that stator radial ventilating air ducts could not only reduce the average torque but also increase the torque ripple in the machine. Furthermore, the torque ripple of the machine under certain load conditions may even be increased by rotor step skewing despite a reduction in cogging torque.

Keywords

Permanent magnet synchronous generator (PMSG) / Radial ventilating air duct / Torque ripple / Step skewing / Magnet shape optimization / Finite element analysis / Wind power

Cite this article

Download citation ▾
He HAO, Wei-zhong FEI, Dong-min MIAO, Meng-jia JIN, Jian-xin SHEN. Torque characteristics in a large permanent magnet synchronous generator with stator radial ventilating air ducts. Front. Inform. Technol. Electron. Eng, 2016, 17(8): 814‒824 https://doi.org/10.1631/FITEE.1500238

References

[1]
Ashabani, M., Mohamed, Y.A.R.I., 2011. Multiobjective shape optimization of segmented pole permanentmagnet synchronous machines with improved torque characteristics. IEEE Trans. Magn., 47(4):795–804. http://dx.doi.org/10.1109/TMAG.2010.2104327
[2]
Atallah, K., Wang, J., Howe, D., 2003. Torque-ripple minimization in modular permanent-magnet brushless machines. IEEE Trans. Ind. Appl., 39(6):1689–1695. http://dx.doi.org/10.1109/TIA.2003.818986
[3]
Bianchi, N., Bolognani, S., 2002. Design techniques for reducing the cogging torque in surface-mounted PM motors. IEEE Trans. Ind. Appl., 38(5):1259–1265. http://dx.doi.org/10.1109/TIA.2002.802989
[4]
Boukais, B., Zeroug, H., 2010. Magnet segmentation for commutation torque ripple reduction in a brushless DC motor drive. IEEE Trans. Magn., 46(11):3909–3919. http://dx.doi.org/10.1109/TMAG.2010.2057439
[5]
Chen, H.S., Dorrell, D.G., Tsai, M.C., 2010. Design and operation of interior permanent-magnet motors with two axial segments and high rotor saliency. IEEE Trans. Magn., 46(9):3664–3675. http://dx.doi.org/10.1109/TMAG.2010.2048037
[6]
Chen, N.N., Ho, S.L., Fu, W.N., 2010. Optimization of permanent magnet surface shapes of electric motors for minimization of cogging torque using FEM. IEEE Trans. Magn., 46(6):2478–2481. http://dx.doi.org/10.1109/TMAG.2010.2044764
[7]
Chu, W.Q., Zhu, Z.Q., 2013. Reduction of on-load torque ripples in permanent magnet synchronous machines by improved skewing. IEEE Trans. Magn., 49(7):3822–3825. http://dx.doi.org/10.1109/TMAG.2013.2247381
[8]
Fei, W.Z., Luk, P.C.K., 2009. An improved model for the back-EMF and cogging torque characteristics of a novel axial flux permanent magnet synchronous machine with a segmental laminated stator. IEEE Trans. Magn., 45(10):4609–4612. http://dx.doi.org/10.1109/TMAG.2009.2024127
[9]
Fei, W.Z., Luk, P.C.K., 2010. A new technique of cogging torque suppression in direct-drive permanent-magnet brushless machines. IEEE Trans. Ind. Appl., 46(4): 1332–1340. http://dx.doi.org/10.1109/TIA.2010.2049551
[10]
Fei, W.Z., Luk, P.C.K., 2012. Torque ripple reduction of a direct-drive permanent-magnet synchronous machine by material-efficient axial pole pairing. IEEE Trans. Ind. Electron., 59(6):2601–2611. http://dx.doi.org/10.1109/TIE.2011.2158048
[11]
Fei, W.Z., Luk, P.C.K., Shen, J.X., 2012. Torque analysis of permanent-magnet flux switching machines with rotor step skewing. IEEE Trans. Magn., 48(10):2664–2673. http://dx.doi.org/10.1109/TMAG.2012.2198223
[12]
Fei, W.Z., Luk, P.C.K., Wu, D., , 2013. Approximate three-dimensional finite element analysis of large permanent magnet synchronous generators with stator radial ventilating ducts. 39th Annual Conf. of IEEE Industrial Electronics Society, p.7313–7318. http://dx.doi.org/10.1109/IECON.2013.6700349
[13]
Güemes, J.A., Iraolagoitia, A.A., Del Hoyo, J.I., , 2011. Torque analysis in permanent-magnet synchronous motors: a comparative study. IEEE Trans. Energy Conv., 26(1):55–63. http://dx.doi.org/10.1109/TEC.2010.2053374
[14]
Han, S.H., Jahns, T.M., Soong, W.L., , 2010. Torque ripple reduction in interior permanent magnet synchronous machines using stators with odd number of slots per pole pair. IEEE Trans. Energy Conv., 25(1):118–127. http://dx.doi.org/10.1109/TEC.2009.2033196
[15]
Islam, M.S., Mir, S., Sebastian, T., , 2005. Design consideration of sinusoidally excited permanent-magnet machines for low-torque-ripple applications. IEEE Trans. Ind. Appl., 41(4):955–962. http://dx.doi.org/10.1109/TIA.2005.851026
[16]
Islam, R., Husain, I., Fardoun, A., , 2009. Permanentmagnet synchronous motor magnet designs with skewing for torque ripple and cogging torque reduction. IEEE Trans. Ind. Appl., 45(1):152–160. http://dx.doi.org/10.1109/TIA.2008.2009653
[17]
Jahns, T.M., Soong, W.L., 1996. Pulsating torque minimization techniques for permanent magnet AC motor drives—a review. IEEE Trans. Ind. Electron., 43(2): 321–330. http://dx.doi.org/10.1109/41.491356
[18]
Lateb, R., Takorabet, N., Meibody-Tabar, F., 2006. Effect of magnet segmentation on the cogging torque in surface-mounted permanent-magnet motors. IEEE Trans. Magn., 42(3):442–445. http://dx.doi.org/10.1109/TMAG.2005.862756
[19]
Li, T., Slemon, G., 1988. Reduction of cogging torque in permanent magnet motors. IEEE Trans. Magn., 24(6):2901–2903. http://dx.doi.org/10.1109/20.92282
[20]
Pang, Y., Zhu, Z.Q., Howe, D., 2005. Self-shielding magnetized vs. shaped parallel-magnetized PM brushless AC motors. . KIEE Int Trans. Electr. Mach. Energy Conv. Syst., 5-B(1):13–19.
[21]
Pyrhonen, J., Ruuskanen, V., Nerg, J., , 2010. Permanent-magnet length effects in AC machines. IEEE Trans. Magn., 46(10):3783–3789. http://dx.doi.org/10.1109/TMAG.2010.2050002
[22]
Ruuskanen, V., Nerg, J., Pyrhonen, J., 2011. Effect of lamination stack ends and radial cooling channels on noload voltage and inductances of permanent-magnet synchronous machines. IEEE Trans. Magn., 47(11):4643–4649. http://dx.doi.org/10.1109/TMAG.2011.2158233
[23]
Ruuskanen, V., Nerg, J., Niemelä, M., , 2013. Effect of radial cooling ducts on the electromagnetic performance of the permanent magnet synchronous generators with double radial forced air cooling for direct-driven wind turbines. IEEE Trans. Magn., 49(6):2974–2981. http://dx.doi.org/10.1109/TMAG.2013.2238679
[24]
Sopanen, J., Ruuskanen, V., Nerg, J., , 2011. Dynamic torque analysis of a wind turbine drive train including a direct-driven permanent-magnet generator. IEEE Trans. Ind. Electron., 58(9):3859–3867. http://dx.doi.org/10.1109/TIE.2010.2087301
[25]
Tapia, J.A., Pyrhonen, J., Puranen, J., , 2013. Optimal design of large permanent magnet synchronous generators. IEEE Trans. Magn., 49(1):642–650. http://dx.doi.org/10.1109/TMAG.2012.2207907
[26]
Wang, Y., Jin, M.J., Fei, W.Z., , 2010. Cogging torque reduction in permanent magnet flux-switching machines by rotor teeth axial pairing. IET Electr. Power Appl., 4(7):500–506. http://dx.doi.org/10.1049/iet-epa.2009.0205
[27]
Yang, Y., Wang, X., Zhang, R., , 2006. The optimization of pole arc coefficient to reduce cogging torque in surface-mounted permanent magnet motors. IEEE Trans. Magn., 42(4):1135–1138. http://dx.doi.org/10.1109/TMAG.2006.871452
[28]
Zhu, Z.Q., Howe, D., 2000. Influence of design parameters on cogging torque in permanent magnet machines. IEEE Trans. Energy Conv., 15(4):407–412. http://dx.doi.org/10.1109/60.900501
[29]
Zhu, Z.Q., Ruangsinchaiwanich, S., Ishak, D., , 2005. Analysis of cogging torque in brushless machines having nonuniformly distributed stator slots and stepped rotor magnets. IEEE Trans. Magn., 41(10):3910–3912. http://dx.doi.org/10.1109/TMAG.2005.854968

RIGHTS & PERMISSIONS

2016 Zhejiang University and Springer-Verlag Berlin Heidelberg
PDF(2341 KB)

Accesses

Citations

Detail

Sections
Recommended

/