Asocial tag clustering method based on common co-occurrence group similarity
Hui-zong LI, Xue-gang HU, Yao-jin LIN, Wei HE, Jian-han PAN
Asocial tag clustering method based on common co-occurrence group similarity
Social tagging systems are widely applied in Web 2.0. Many users use these systems to create, organize,manage, and share Internet resources freely. However, many ambiguous and uncontrolled tags produced by social tagging systems not only worsen users’ experience, but also restrict resources’ retrieval efficiency. Tag clustering can aggregate tags with similar semantics together, and help mitigate the above problems. In this paper, we first present a common co-occurrence group similarity based approach, which employs the ternary relation among users,resources, and tags to measure the semantic relevance between tags. Then we propose a spectral clustering method to address the high dimensionality and sparsity of the annotating data. Finally, experimental results show that the proposed method is useful and efficient.
Social tagging systems / Tag co-occurrence / Spectral clustering / Group similarity http://dx.doi.org/10.1631/FITEE.1500187
[1] |
Begelman, G., Keller, P., Smadja, F., 2006. Automated tag clustering: improving search and exploration in the tag space. Proc. 15th Int. World Wide Web Conf., p.15–33.
|
[2] |
Bischoff, K., Firan, C.S., Nejdl, W.,
CrossRef
Google scholar
|
[3] |
Cui, J.W., Liu, H.Y., He, J.,
CrossRef
Google scholar
|
[4] |
Cuzzocrea, A., 2006. Combining multidimensional user models and knowledge representation and management techniques for making web services knowledge-aware. Web Intell. Agent Syst., 4(3):289–312.
|
[5] |
Cuzzocrea, A., Mastroianni, C., 2003. A reference architecture for knowledge management-based web systems.Proc. 4th Int. Conf. on Web Information Systems Engineering, p.347–351.
CrossRef
Google scholar
|
[6] |
Dattolo, A.,Eynard, D., Mazzola, L., 2011. An integrated approach to discover tag semantics. Proc. ACM Symp.on Applied Computing, p.814–820.
CrossRef
Google scholar
|
[7] |
Deutsch, S., Schrammel, J., Tscheligi, M., 2011. Comparing different layouts of tag clouds: findings on visual perception.Human Aspects Visual., 6431:23–37.
CrossRef
Google scholar
|
[8] |
Dunn, J.C., 1974. Well-separated clusters and optimal fuzzypartitions.J. Cybern., 4(1):95–104.
CrossRef
Google scholar
|
[9] |
Furnas, G.W., Fake, C., von Ahn, L.,
CrossRef
Google scholar
|
[10] |
Gemmell, J., Shepitsen, A., Mobasher, B.,
CrossRef
Google scholar
|
[11] |
Gu, M., Zha, H., Ding, C.,
CrossRef
Google scholar
|
[12] |
Heymann, P., Garcia-Molina, H., 2006. Collaborative creation of communal hierarchical taxonomies in social tagging systems. Technical Report, No. 2006-10, Stanford University, USA.
|
[13] |
Isabella, P., 2009. Folksonomies. Indexing and Retrieval in Web 2.0. Walter de Gruyter, Berlin.
CrossRef
Google scholar
|
[14] |
Jiang, J.J., Conrath, D.W., 1997. Semantic similarity based on corpus statistics and lexical taxonomy. Proc. Int.Conf. of Research on Computational Linguistics, p.1–15.
|
[15] |
Kaufman, L., Rousseeuw, P.J., 2008. Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley & Sons, London, UK.
CrossRef
Google scholar
|
[16] |
Knautz, K., Soubusta, S., Stock, W.G., 2010. Tag clusters as information retrieval interfaces. Proc. 43rd Hawaii Int. Conf. on System Sciences, p.1–10.
CrossRef
Google scholar
|
[17] |
Laniado, D., Eynard, D., Colombetti, M., 2007. Using Word-Net to turn a folksonomy into a hierarchy of concepts.Proc. 4th Italian Semantic Web Workshop on Semantic Web Application and Perspectives, p.192–201.
|
[18] |
Lehwark, P., Risi, S., Ultsch, A., 2008. Visualization and clustering of tagged music data. Proc. 31st Annual Conf. on Data Analysis, Machine Learning and Applications,p.673-680.
CrossRef
Google scholar
|
[19] |
Markines, B., Cattuto, C., Menczer, F.,
CrossRef
Google scholar
|
[20] |
Marlow, C., Naaman, M., Boyd, D.,
CrossRef
Google scholar
|
[21] |
Mathes, A., 2004. Folksonomies—cooperative classification and communication through shared metadata. Available from http://www.adammathes.com/academic/computer-mediated-communication/folksonomies.html[Accessed on Apr. 5, 2015].
|
[22] |
Michlmayr, E., Cayzer, S., 2007. Learning user profiles from tagging data and leveraging them for personal(ized)information access. Proc. 16th Int. World Wide Web Conf., p.1–7.
|
[23] |
Ng, A.Y., Jordan, M.I., Weiss, Y., 2002. On spectral clustering:analysis and an algorithm. Proc. Conf. Advances in Neural Information Processing Systems, p.849–856.
|
[24] |
Noll, M.G., Meinel, C., 2007. Web search personalization via social bookmarking and tagging. Proc. 6th Int.Semantic Web Conf. and 2nd Asian Semantic Web Conf. on the Semantic Web, p.367–380.
CrossRef
Google scholar
|
[25] |
Noruzi, A., 2006. Folksonomies: (un)controlled vocabulary?Knowl. Organ., 33(4):199–203.
|
[26] |
Rivadeneira, A.W., Gruen, D.M., Muller, M.J.,
CrossRef
Google scholar
|
[27] |
Salton, G., 1983. Introduction to Modern Information Retrieval.McGraw-Hill College, New York, USA.
CrossRef
Google scholar
|
[28] |
Shepitsen, A., Gemmell, J., Mobasher, B.,
CrossRef
Google scholar
|
[29] |
Shi, J., Malik, J., 2000. Normalized cuts and image segmentation.IEEE Trans. Patt. Anal. Mach. Intell.,22(8):888–905.
CrossRef
Google scholar
|
[30] |
Shirky, C., 2004. Folksonomy.
|
[31] |
Simpson, E., 2008. Clustering tags in enterprise and web folksonomies. Proc. Int. Conf. on Weblogs and Social Media, p.222–223.
|
[32] |
Suchanek, F.M., Vojnovic, M., Gunawardena, D., 2008. Social tags: meaning and suggestions. Proc. 17th ACM Conf. on Information and Knowledge Management,p.223–232.
CrossRef
Google scholar
|
[33] |
Szomszor, M., Cattuto, C., Alani, H.,
|
[34] |
Van Damme, C., Hepp, M., Siorpaes, K., 2007. Folksontology:an integrated approach for turning folksonomies into ontologies. Proc. Workshop on Bridging the Gap Between Semantic Web and Web2.0, p.57–70.
|
[35] |
Vanderlei, T.A., Durāo F.A., Martins, A.C.,
CrossRef
Google scholar
|
[36] |
Vander Wal, T., 2004. Folksonomy.
|
[37] |
Vandic, D., van Dam, J.W., Hogenboom, F.,
CrossRef
Google scholar
|
[38] |
Xu, G.D., Zong, Y., Jin, P.,
CrossRef
Google scholar
|
/
〈 | 〉 |