ARAP++: an extension of the local/global approach tomesh parameterization<FootNote> 1 Project supported by the National Natural Science Foundation of China (Nos. 61432003, 61572105, 11171052, and 61328206) </FootNote>
Zhao WANG, Zhong-xuan LUO, Jie-lin ZHANG, Emil SAUCAN
ARAP++: an extension of the local/global approach tomesh parameterization<FootNote> 1 Project supported by the National Natural Science Foundation of China (Nos. 61432003, 61572105, 11171052, and 61328206) </FootNote>
Mesh parameterization is one of the fundamental operations in computer graphics (CG) and computeraided design (CAD). In this paper, we propose a novel local/global parameterization approach, ARAP++, for singleand multi-boundary triangular meshes. It is an extension of the as-rigid-as-possible (ARAP) approach, which stitches together 1-ring patches instead of individual triangles. To optimize the spring energy, we introduce a linear iterative scheme which employs convex combination weights and a fitting Jacobian matrix corresponding to a prescribed family of transformations. Our algorithm is simple, efficient, and robust. The geometric properties (angle and area) of the original model can also be preserved by appropriately prescribing the singular values of the fitting matrix. To reduce the area and stretch distortions for high-curvature models, a stretch operator is introduced. Numerical results demonstrate that ARAP++ outperforms several state-of-the-art methods in terms of controlling the distortions of angle, area, and stretch. Furthermore, it achieves a better visualization performance for several applications, such as texture mapping and surface remeshing.
Mesh parameterization / Convex combination weights / Stretch operator / Jacobian matrix
[1] |
Aigerman, N., Lipman, Y., 2013. Injective and bounded distortion mappings in 3D. ACM Trans. Graph., 32(4), Article 106. http://dx.doi.org/10.1145/2461912.2461931
|
[2] |
Bouaziz, S., Deuss, M., Schwartzburg, Y.,
|
[3] |
Chen, B.M., Gotsman, C., Bunin, G., 2008. Conformal flattening by curvature prescription and metric scaling. Comput. Graph. Forum, 27(2):449–458. http://dx.doi.org/10.1111/j.1467-8659.2008.01142.x
|
[4] |
Chen, Z., Liu, L., Zhang, Z.,
|
[5] |
Degener, P., Meseth, J., Klein, R., 2003. An adaptable surface parameterization method. Proc. 12th Int. Meshing Roundtable, p.227–237.
|
[6] |
Desbrun, M., Meyer, M., Allize, P., 2002. Intrinsic parameterization of surface meshes. Comput. Graph. Forum, 21(2):209–218. http://dx.doi.org/10.1111/1467-8659.00580
|
[7] |
Eck, M., DeRose, T., Duchamp, T.,
|
[8] |
Floater, M.S., 1997. Parameterization and smooth approximation of surface triangulations. Comput. Aid. Geom. Des., 14(3):231–250. http://dx.doi.org/10.1016/S0167-8396(96)00031-3
|
[9] |
Floater, M.S., 2003. Mean value coordinates. Comput. Aid. Geom. Des., 20(1):19–27. http://dx.doi.org/10.1016/S0167-8396(03)00002-5
|
[10] |
Floater, M.S., Hormann, K., 2005. Surface parameterization: a tutorial and survey. In: Dodgson, N.A., Floater, M.S., Sabin, M.A. (Eds.), Advances in Multiresolution for Geometric Modelling, p.157–186. http://dx.doi.org/10.1007/3-540-26808-1_9
|
[11] |
Gortler, S., Gotsman, C., Thurston, D., 2006. Discrete oneforms on meshes and applications to 3D mesh parameterization. Comput. Aid. Geom. Des., 23(2):83–112. http://dx.doi.org/10.1016/j.cagd.2005.05.002
|
[12] |
Gower, J.C., Dijksterhuis, G.B., 2004. Procrustes Problems. Oxford University Press, Oxford.
|
[13] |
Gu, X., Yau, S., 2002. Computing conformal structures of surfaces. Commun. Inform. Syst., 2(2):121–146. http://dx.doi.org/10.4310/CIS.2002.v2.n2.a2
|
[14] |
Gu, X., Yau, S., 2003. Global conformal surface parameterization. Proc. Eurographics/ACM SIGGRAPH Symp. on Geometry Processing, p.127–137.
|
[15] |
Haker, S., Angenent, S., Tannenbaum, A.,
|
[16] |
Hoppe, H., DeRose, T., Duchamp, T.,
|
[17] |
Hormann, K., Greiner, G., 2000a. MIPS: an efficient global parameterization method. Proc. Curve and Surface, p.153–162.
|
[18] |
Hormann, K., Greiner, G., 2000b. Quadrilateral remeshing. Proc. Vision Modeling and Visualization, p.153–162.
|
[19] |
Hormann, K., Greiner, G., Campagna, S., 1999. Hierarchical parameterization of triangulated surfaces. Proc. of Vision, Modeling and Visualization, p.219–226.
|
[20] |
Hormann, K., Labsik, U., Greiner, G., 2001. Remeshing triangulated surfaces with optimal parameterizations. Comput.-Aid. Des., 33(11):779–788. http://dx.doi.org/10.1016/S0010-4485(01)00094-X
|
[21] |
Hormann, K., Lévy, B., Sheffer, A., 2007. Mesh parameterization: theory and practice. Proc. SIGGRAPH, p.1–122.
|
[22] |
Horn, R., Johnson, C., 1990. Norms for vectors and matrices. In: Matrix Analysis. Cambridge University Press, England.
|
[23] |
Jacobson, A., Baran, I., Kavan, L.,
|
[24] |
Jin, M., Kim, J., Luo, F.,
|
[25] |
Kharevych, L., Springborn, B., Schröder, P., 2006. Discrete conformal mappings via circle patterns. ACM Trans. Graph., 25(2):412–438. http://dx.doi.org/10.1145/1138450.1138461
|
[26] |
Lawson, L., 1977. Software for c1 surface interpolation. In: Mathematical Software III. Academic Press, New York.
|
[27] |
Lee, Y., Kim, H., Lee, S., 2002. Mesh parameterization with a virtual boundary. Comput. Graph., 26(5):677–686. http://dx.doi.org/10.1016/S0097-8493(02)00123-1
|
[28] |
Levi, Z., Zorin, D., 2014. Strict minimizers for geometric optimization. ACM Trans. Graph., 33(6), Article 185. http://dx.doi.org/10.1145/2661229.2661258
|
[29] |
Lévy, B., Petitjean, S., Ray, N.,
|
[30] |
Lipman, Y., 2012. Bounded distortion mapping spaces for triangular meshes. ACM Trans. Graph., 31(4), Article 108. http://dx.doi.org/10.1145/2185520.2185604
|
[31] |
Liu, L., Zhang, L., Xu, Y.,
|
[32] |
Mullen, P., Tong, Y., Alliez, P.,
|
[33] |
Pinkall, U., Polthier, K., 1993. Computing discrete minimal surface and their conjugates. Exp. Math., 2(1):15–36. http://dx.doi.org/10.1080/10586458.1993.10504266
|
[34] |
Sander, P., Snyder, J., Gortler, S.,
|
[35] |
Saucan, E., Appleboim, E., Barak-Shimron, E.,
|
[36] |
Sheffer, A., de Sturler, E., 2001. Parameterization of faceted surfaces for meshing using angle-based flattening. Eng. Comput., 17(3):326–337. http://dx.doi.org/10.1007/PL00013391
|
[37] |
Sheffer, A., Lévy, B., Mogilnitsky, M.,
|
[38] |
Sheffer, A., Praun, E., Rose, K., 2007. Mesh parameterization methods and their applications. Comput. Graph. Vis., 2(2):105–171. http://dx.doi.org/10.1561/0600000011
|
[39] |
Sorkine, O., Alexa, M., 2007. As-rigid-as-possible surface modeling. Proc. Eurographics Symp. on Geometry Processing, p.109–116.
|
[40] |
Tutte, W.T., 1963. How to draw a graph. Proc. London Math. Soc., 13(3):743–768..
|
[41] |
Weber, O., Zorin, D., 2014. Locally injective parametrization with arbitrary fixed boundaries. ACM Trans. Graph., 33(4), Article 75. http://dx.doi.org/10.1145/2601097.2601227
|
[42] |
Weber, O., Myles, A., Zorin, D., 2012. Computing extremal quasiconformal maps. Comput. Graph. Forum, 31(5):1679–1689. http://dx.doi.org/10.1111/j.1467-8659.2012.03173.x
|
[43] |
Yoshizawa, S., Belyaev, A., Seidel, H., 2004. A fast and simple stretch-minimizing mesh parameterization. Proc. Shape Modeling Applications, p.200–208. http://dx.doi.org/10.1109/SMI.2004.1314507
|
[44] |
Zayer, R., Lévy, B., Seidel, H., 2007. Linear angle based parameterization. Proc. 5th Eurographics Symp. on Geometry Processing, p.135–141.
|
[45] |
Zhang, L., Liu, L., Gotsman, C.,
|
[46] |
Zhao, X., Su, Z., Gu, X.,
|
[47] |
Zigelman, G., Kimmel, R., Kiryati, N., 2002. Texture mapping using surface flattening via multidimensional scaling. IEEE Trans. Visual. Comput. Graph., 8(2):198–207. http://dx.doi.org/10.1109/2945.998671
|
/
〈 | 〉 |