Amodified variable rate particle filter for maneuvering target tracking

Yun-fei GUO, Kong-shuai FAN, Dong-liang PENG, Ji-an LUO, Han SHENTU

PDF(425 KB)
PDF(425 KB)
Front. Inform. Technol. Electron. Eng ›› 2015, Vol. 16 ›› Issue (11) : 985-994. DOI: 10.1631/FITEE.1500149

Amodified variable rate particle filter for maneuvering target tracking

Author information +
History +

Abstract

To address the problem of maneuvering target tracking, where the target trajectory has prolonged smooth regions and abrupt maneuvering regions, a modified variable rate particle filter (MVRPF) is proposed. First, a Cartesian-coordinate based variable rate model is presented. Compared with conventional variable rate models, the proposed model does not need any prior knowledge of target mass or external forces. Consequently, it is more convenient in practical tracking applications. Second, a maneuvering detection strategy is adopted to adaptively adjust the parameters in MVRPF, which helps allocate more state points at high maneuver regions and fewer at smooth regions. Third, in the presence of small measurement errors, the unscented particle filter, which is embedded in MVRPF, can move more particles into regions of high likelihood and hence can improve the tracking performance. Simulation results illustrate the effectiveness of the proposed method.

Keywords

Maneuvering target tracking / Prolonged smooth regions / Variable rate model / Maneuver detection

Cite this article

Download citation ▾
Yun-fei GUO, Kong-shuai FAN, Dong-liang PENG, Ji-an LUO, Han SHENTU. Amodified variable rate particle filter for maneuvering target tracking. Front. Inform. Technol. Electron. Eng, 2015, 16(11): 985‒994 https://doi.org/10.1631/FITEE.1500149

References

[1]
Bar-Shalom, Y., Li, X.R., 1995. Multitarget-Multisensor Tracking: Principles and Techniques. Yaakov Bar-Shalom.
[2]
Bar-Shalom, Y., Li, X.R., Kirubarajan, T., 2001. Estimation with Applications to Tracking and Navigation. Johh Wiley & Sons, New York, USA.
[3]
Bunch, P., Godsill, S., 2013. Particle smoothing algorithms for variable rate models. IEEE Trans. Signal Process., 61(7):1663–1675. [doi:10.1049/iet-cta.2013.0472]
[4]
Farina, A., Ristic, B., Benvenuti, D., 2002. Tracking a ballistic target: comparison of several nonlinear filters. IEEE Trans. Aerosp. Electron. Syst., 38(3):854–867. [doi:10.1109/TAES.2002.1039404]
[5]
Godsill, S.J., Vermaak, J., Ng, W., , 2007. Models and algorithms for tracking of maneuvering objects using variable rate particle filters. Proc. IEEE, 95(5):925–952. [doi:10.1109/JPROC.2007.894708]
[6]
Julier, S., Uhlmann, J., Durrant-Whyte, H.F., 2000. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. Autom. Contr., 45(3):477–482. [doi:10.1109/9.847726]
[7]
Li, T.C., Bolic, M., Djuric, P.M., 2015. Resampling methods for particle filtering: classification, implementation, and strategies. IEEE Signal Process. Mag., 32(3):70–86. [doi:10.1109/MSP.2014.2330626]
[8]
Li, X.R., Jilkov, V.P., 2003. Survey of maneuvering target tracking. Part I: dynamic models. IEEE Trans. Aerosp. Electron. Syst., 39(4):1333–1364. [doi:10.1109/TAES.2003.1261132]
[9]
Li, X.R., Jilkov, V.P., 2010. Survey of maneuvering target tracking. Part II: motion models of ballistic and space targets. IEEE Trans. Aerosp. Electron. Syst., 46(1):96–119. [doi:10.1109/TAES.2010.5417150]
[10]
Li, X.R., Zhao, Z.L., Jilkov, V.P., 2001. Practical measures and test for credibility of an estimator. Proc. Workshop on Estimation, Tracking, and Fusion: a Tribute to Yaakov Bar-Shalom, p.481–495.
[11]
Nemeth, C., Fearnhead, P., Mihaylova, L., 2014. Sequential Monte Carlo methods for state and parameter estimation in abruptly changing environments. IEEE Trans. Signal Process., 62(5):1245–1255. [doi:10.1109/TSP.2013.2296278]
[12]
Ru, J.F., Jilkov, V.P., Li, X.R., , 2009. Detection of target maneuver onset. IEEE Trans. Aerosp. Electron. Syst., 45(2):536–554. [doi:10.1109/TAES.2009.5089540]
[13]
Schoenecker, S., Willett, P., Bar-Shalom, Y., 2013. The ML-PMHT multistatic tracker for sharply maneuvering targets. IEEE Trans. Aerosp. Electron. Syst., 49(4): 2235–2249. [doi:10.1109/TAES.2013.6621813]
[14]
Ulker, Y., Gunsel, B., 2012. Multiple model target tracking with variable rate particle filters. Dig. Signal Process., 22(3):417–429. [doi:10.1016/j.dsp.2012.01.003]
[15]
van der Merwe, R., Doucet, A., de Freitas, N., , 2000. The unscented particle filter. NIPS, p.584–590.
[16]
Whiteley, N., Johansen, A.M., Godsill, S., 2011. Monte Carlo filtering of piecewise deterministic processes. J. Comput. Graph. Stat., 20(1):119–139. [doi:10.1198/jcgs.2009.08052]
[17]
Yang, W., Wang, Z.X., Fu, Y.W., , 2015. Joint detection, tracking and classification of a manoeuvring target in the finite set statistics framework. IET Signal Process., 9(1):10–20. [doi:10.1049/iet-spr.2013.0363]
[18]
Zhang, W.,Zuo, J.Y., Guo, Q., , 2015. Multisensor information fusion scheme for particle filter. Electron. Lett., 51(6):486–488. [doi:10.1049/el.2014.3051]
[19]
Zhang, Y.J., Geng, Z., 2013. Detection of target maneuver from bearings-only measurements. IEEE Trans. Aerosp. Electron. Syst., 49(3):2028–2034. [doi:10.1109/TAES.2013.6558036]
[20]
Zuo, J.Y., Jia, Y.N., Zhang, Y.Z., , 2013. Adaptive iterated particle filter. Electron. Lett., 49(12):742–744. [doi:10.1049/el.2012.4506]
PDF(425 KB)

Accesses

Citations

Detail

Sections
Recommended

/