Face recognition based on subset selection via metric learning on manifold

Hong SHAO, Shuang CHEN, Jie-yi ZHAO, Wen-cheng CUI, Tian-shu YU

PDF(956 KB)
PDF(956 KB)
Front. Inform. Technol. Electron. Eng ›› 2015, Vol. 16 ›› Issue (12) : 1046-1058. DOI: 10.1631/FITEE.1500085

Face recognition based on subset selection via metric learning on manifold

Author information +
History +

Abstract

With the development of face recognition using sparse representation based classification (SRC), many relevant methods have been proposed and investigated. However, when the dictionary is large and the representation is sparse, only a small proportion of the elements contributes to the l1-minimization. Under this observation, several approaches have been developed to carry out an efficient element selection procedure before SRC. In this paper, we employ a metric learning approach which helps find the active elements correctly by taking into account the interclass/intraclass relationship and manifold structure of face images. After the metric has been learned, a neighborhood graph is constructed in the projected space. A fast marching algorithm is used to rapidly select the subset from the graph, and SRC is implemented for classification. Experimental results show that our method achieves promising performance and significant efficiency enhancement.

Keywords

Face recognition / Sparse representation / Manifold structure / Metric learning / Subset selection

Cite this article

Download citation ▾
Hong SHAO, Shuang CHEN, Jie-yi ZHAO, Wen-cheng CUI, Tian-shu YU. Face recognition based on subset selection via metric learning on manifold. Front. Inform. Technol. Electron. Eng, 2015, 16(12): 1046‒1058 https://doi.org/10.1631/FITEE.1500085

References

[1]
Arandjelović, O., Shakhnarovich, G., Fisher, J., et al., 2005. Face recognition with image sets using manifold density divergence. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.581–588.
CrossRef Google scholar
[2]
Belkin, M., Niyogi, P., 2001. Laplacian eigenmaps and spectral techniques for embedding and clustering. NIPS,14:585591.
[3]
Candes, E.J., 2008. The restricted isometry property and its implications for compressed sensing. Compt. Rend. Math., 346(9-10):589–592.
CrossRef Google scholar
[4]
Candes, E.J., Tao, T., 2007. The Dantzig selector: statistical estimation when p is much larger than n. Ann. Stat.,35(6):2313-2351.
CrossRef Google scholar
[5]
Deng, W.H., Hu, J.N., Guo, J., 2012. Extended SRC: undersampled face recognition via intraclass variant dictionary. IEEE Trans. Patt. Anal. Mach. Intell., 34(9):1864–1870.
CrossRef Google scholar
[6]
Efron, B., Hastie, T., Johnstone, I., et al., 2004. Least angle regression. Ann. Stat., 32(2):407–499.
CrossRef Google scholar
[7]
Georghiades, A.S., Belhumeur, P.N., Kriegman, D., 2001. From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Patt. Anal. Mach. Intell., 23(6):643–660.
CrossRef Google scholar
[8]
He, R., Zheng, W.S., Hu, B.G., 2011. Maximum correntropy criterion for robust face recognition. IEEE Trans. Patt. Anal. Mach. Intell., 33(8):1561-1576.
CrossRef Google scholar
[9]
He, R., Zheng, W.S., Hu, B.G., et al., 2013. Two-stage nonnegative sparse representation for large-scale face recognition. IEEE Trans. Neur. Netw. Learn. Syst., 24(1):35–46.
CrossRef Google scholar
[10]
He, R., Zheng, W.S., Tan, T.N., et al., 2014. Half-quadraticbased iterative minimization for robust sparse representation. IEEE Trans. Patt. Anal. Mach. Intell., 36(2):261–275.
CrossRef Google scholar
[11]
Jiang, Z.L., Lin, Z., Davis, L.S., 2011. Learning a discriminative dictionary for sparse coding via label consistent K-SVD. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.1697–1704.
CrossRef Google scholar
[12]
Lai, Z.H., Li, Y.J., Wan, M.H., et al., 2013. Local sparse representation projections for face recognition. Neur. Comput. Appl., 23(7):2231–2239.
CrossRef Google scholar
[13]
Liao, S.C., Jain, A.K., Li, S.Z., 2013. Partial face recognition: alignment-free approach. IEEE Trans. Patt. Anal. Mach. Intell., 35(5):1193–1205.
CrossRef Google scholar
[14]
Lu, J.W., Tan, Y.P., Wang, G., 2013. Discriminative multimanifold analysis for face recognition from a single training sample per person. IEEE Trans. Patt. Anal. Mach. Intell., 35(1):39–51.
CrossRef Google scholar
[15]
Martinez, A., Benavente, B., 1998. The AR Face Database. CVC Technical Report 24.
[16]
Ortiz, E.G., Becker, B.C., 2014. Face recognition for webscale datasets. Comput. Vis. Image Understand., 118:153–170.
CrossRef Google scholar
[17]
Patel, V.M., Wu, T., Biswas, S., et al., 2012. Dictionarybased face recognition under variable lighting and pose. IEEE Trans. Inform. Forens. Secur., 7(3):954–965.
CrossRef Google scholar
[18]
Phillips, P.J., Wechsler, H., Huang, J., et al., 1998. The FERET database and evaluation procedure for facerecognition algorithms. Image Vis. Comput., 16(5):295–306.
CrossRef Google scholar
[19]
Roweis, S.T., Saul, L.K., 2000. Nonlinear dimensionality reduction by locally linear embedding. Science,290(5500):2323–2326.
CrossRef Google scholar
[20]
Sethian, J.A., 1999. Fast marching methods. SIAM Rev., 41(2):199–235.
CrossRef Google scholar
[21]
Seung, H.S., Lee, D.D., 2000. The manifold ways of perception. Science, 290(5500):2268–2269.
CrossRef Google scholar
[22]
Tenenbaum, J.B., de Silva, V., Langford, J.C., 2000. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319–2323.
CrossRef Google scholar
[23]
Tibshirani, R., 1996. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B, 58(1):267–288.
[24]
Vandenberghe, L., Boyd, S., 1996. Semidefinite programming. SIAM Rev., 38(1):49–95.
CrossRef Google scholar
[25]
Wagner, A., Wright, J., Ganesh, A., et al., 2012. Toward a practical face recognition system: robust alignment and illumination by sparse representation. IEEE Trans. Patt. Anal. Mach. Intell., 34(2):372–386.
CrossRef Google scholar
[26]
Wang, L.F., Wu, H.Y., Pan, C.H., 2015. Manifold regularized local sparse representation for face recognition. IEEE Trans. Circ. Syst. Video Technol., 25(4): 651–659.
CrossRef Google scholar
[27]
Wang, R.P., Shan, S.G., Chen, X.L., et al., 2008. Manifoldmanifold distance with application to face recognition based on image set. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.1–8.
CrossRef Google scholar
[28]
Weinberger, K.Q., Saul, L.K., 2009. Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res., 10:207–244.
CrossRef Google scholar
[29]
Wright, J., Yang, A.Y., Ganesh, A., et al., 2009. Robust face recognition via sparse representation. IEEE Trans. Patt. Anal. Mach. Intell., 31(2):210–227.
CrossRef Google scholar
[30]
Xu, Y., Zuo, W.M., Fan, Z.Z., 2012. Supervised sparse representation method with a heuristic strategy and face recognition experiments. Neurocomputing, 79:125–131.
CrossRef Google scholar
[31]
Xu, Y., Zhu, Q., Fan, Z.Z., et al., 2013. Using the idea of the sparse representation to perform coarse-to-fine face recognition. Inform. Sci., 238:138–148.
CrossRef Google scholar
[32]
Yang, M., Zhang, L., 2010. Gabor feature based sparse representation for face recognition with gabor occlusion dictionary. Proc. 11th European Conf. on Computer Vision, p.448–461.
CrossRef Google scholar
[33]
Yang, M., Zhang, D., Yang, J., 2011. Robust sparse coding for face recognition. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.625–632.
CrossRef Google scholar
[34]
Yu, Z.P., Wu, Z.D., Zhang, J.W., 2013. An illumination robust algorithm for face recognition via SRC and Gradientfaces. Proc. 2nd Int. Conf. on Innovative Computing and Cloud Computing, p.36–40.
CrossRef Google scholar
[35]
Zhang, D., Yang, M., Feng, X.C., 2011. Sparse representation or collaborative representation: which helps face recognition? Proc. IEEE Int. Conf. on Computer Vision, p.471–478.
CrossRef Google scholar
[36]
Zhang, Q., Li, B.X., 2010. Discriminative K-SVD for dictionary learning in face recognition. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.2691–2698.
CrossRef Google scholar
[37]
Zhou, T.Y., Tao, D.C., Wu, X.D., 2011. Manifold elastic net: a unified framework for sparse dimension reduction. Data Min. Knowl. Discov., 22(3):340–371.
CrossRef Google scholar
PDF(956 KB)

Accesses

Citations

Detail

Sections
Recommended

/