Beyond bag of latent topics: spatial pyramid matching for scene category recognition

Fu-xiang LU, Jun HUANG

PDF(658 KB)
PDF(658 KB)
Front. Inform. Technol. Electron. Eng ›› 2015, Vol. 16 ›› Issue (10) : 817-828. DOI: 10.1631/FITEE.1500070

Beyond bag of latent topics: spatial pyramid matching for scene category recognition

Author information +
History +

Abstract

We propose a heterogeneous, mid-level feature based method for recognizing natural scene categories. The proposed feature introduces spatial information among the latent topics by means of spatial pyramid, while the latent topics are obtained by using probabilistic latent semantic analysis (pLSA) based on the bag-of-words representation. The proposed feature always performs better than standard pLSA because the performance of pLSA is adversely affected in many cases due to the loss of spatial information. By combining various interest point detectors and local region descriptors used in the bag-of-words model, the proposed feature can make further improvement for diverse scene category recognition tasks. We also propose a two-stage framework for multi-class classification. In the first stage, for each of possible detector/descriptor pairs, adaptive boosting classifiers are employed to select the most discriminative topics and further compute posterior probabilities of an unknown image from those selected topics. The second stage uses the prod-max rule to combine information coming from multiple sources and assigns the unknown image to the scene category with the highest ‘final’ posterior probability. Experimental results on three benchmark scene datasets show that the proposed method exceeds most state-of-the-art methods.

Keywords

Scene category recognition / Probabilistic latent semantic analysis / Bag-of-words / Adaptive boosting

Cite this article

Download citation ▾
Fu-xiang LU, Jun HUANG. Beyond bag of latent topics: spatial pyramid matching for scene category recognition. Front. Inform. Technol. Electron. Eng, 2015, 16(10): 817‒828 https://doi.org/10.1631/FITEE.1500070

References

[1]
Freund, Y., Schapire, R.E., 1997. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci., 55(1): 119−139. [
CrossRef Google scholar
[2]
Harris, C., Stephens, M., 1988. A combined corner and edge detector. Alvey Vision Conf., p.147−151. [
CrossRef Google scholar
[3]
Hofmann, T., 1999. Probabilistic latent semantic indexing. Proc. 22nd Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, p.50−57. [
CrossRef Google scholar
[4]
Hu, Z.H., Cai, Y.Z., Li, Y.G., , 2005. Data fusion for fault diagnosis using multi-class support vector machines. J. Zhejiang Univ.-Sci., 6A(10): 1030−1039. [
CrossRef Google scholar
[5]
Kadir, T., Brady, M., 2001. Saliency, scale and image description. Int. J. Comput. Vis., 45(2): 83−105. [
CrossRef Google scholar
[6]
Kwitt, R., Vasconcelos, N., Rasiwasia, N., 2012. Scene recognition on the semantic manifold. European Conf. on Computer Vision, p.359−372. [
CrossRef Google scholar
[7]
Lazebnik, S., Schmid, C., Ponce, J., 2006. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, p.2169−2178. [
CrossRef Google scholar
[8]
Li, F.F., Perona, P., 2005. A Bayesian hierarchical model for learning natural scene categories. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, p.524−531. [
CrossRef Google scholar
[9]
Liu, J.G., Shah, M., 2007. Scene modeling using coclustering. IEEE Int. Conf. on Computer Vision, p.1−7. [
CrossRef Google scholar
[10]
Lowe, D.G., 2004. Distinctive image features from scaleinvariant keypoints. Int. J. Comput. Vis., 60(2): 91−110. [
CrossRef Google scholar
[11]
Lu, F.X., Yang, X.K., Zhang, R., , 2009. Image classification based on pyramid histogram of topics. IEEE Int. Conf. on Multimedia and Expo, p.398−401. [
CrossRef Google scholar
[12]
Lu, F.X., Yang, X.K., Lin, W.Y., , 2011. Image classification with multiple feature channels. Opt. Eng., 50(5): 057210.1−057210.9. [
CrossRef Google scholar
[13]
Matas, J., Chum, O., Urban, M., , 2004. Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput., 22(10): 761−767. [
CrossRef Google scholar
[14]
Mikolajczyk, K., Schmid, C., 2004. Scale & affine invariant interest point detectors. Int. J. Comput. Vis., 60(1): 63−86. [
CrossRef Google scholar
[15]
Oliva, A., Torralba, A., 2001. Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis., 42(3): 145−175. [
CrossRef Google scholar
[16]
Qi, X.B., Xiao, R., Li, C.G., , 2014. Pairwise rotation invariant co-occurrence local binary pattern. IEEE Trans. Patt. Anal. Mach. Intell., 36(11): 2199−2213. [
CrossRef Google scholar
[17]
Quelhas, P., Monay, F., Odobez, J., , 2007. A thousand words in a scene. IEEE Trans. Patt. Anal. Mach. Intell., 29(9): 1575−1589. [
CrossRef Google scholar
[18]
Shechtman, E., Irani, M., 2007. Matching local selfsimilarities across images and videos. IEEE Conf. on Computer Vision and Pattern Recognition, p.1−8. [
CrossRef Google scholar
[19]
Wang, Z.L., Feng, J.S., Yan, S.C., , 2013. Linear distance coding for image classification. IEEE Trans. Image Process., 22(2): 537−548. [
CrossRef Google scholar
[20]
Wu, J.X., 2012. Efficient HIK SVM learning for image classification. IEEE Trans. Image Process., 21(10): 4442−4453. [
CrossRef Google scholar
[21]
Wu, J.X., Rehg, J.M., 2011. CENTRIST: a visual descriptor for scene categorization. IEEE Trans. Patt. Anal. Mach. Intell., 33(8): 1489−1501. [
CrossRef Google scholar
[22]
Zhang, J.G., Marszałek, M., Lazebnik, S., , 2006. Local features and kernels for classification of texture and object categories: a comprehensive study. Int. J. Comput. Vis., 73(2): 213−238. [
CrossRef Google scholar
PDF(658 KB)

Accesses

Citations

Detail

Sections
Recommended

/