Enhancing power transfer capability through flexible AC transmission system devices: a review
Fadi M. ALBATSH, Saad MEKHILEF, Shameem AHMAD, H. MOKHLIS, M. A. HASSAN
Enhancing power transfer capability through flexible AC transmission system devices: a review
Global demand for power has significantly increased, but power generation and transmission capacities have not increased proportionally with this demand. As a result, power consumers suffer from various problems, such as voltage and frequency instability and power quality issues. To overcome these problems, the capacity for available power transfer of a transmission network should be enhanced. Researchers worldwide have addressed this issue by using flexible AC transmission system (FACTS) devices. We have conducted a comprehensive review of how FACTS controllers are used to enhance the available transfer capability (ATC) and power transfer capability (PTC) of power system networks. This review includes a discussion of the classification of different FACTS devices according to different factors. The popularity and applications of these devices are discussed together with relevant statistics. The operating principles of six major FACTS devices and their application in increasing ATC and PTC are also presented. Finally, we evaluate the performance of FACTS devices in ATC and PTC improvement with respect to different control algorithms.
FACTS devices / Available transfer capability / Power transfer capability / Artificial intelligence
[1] |
ABB, 2012. Flexible Alternating Current Transmission Systems (FACTS). Available from
|
[2] |
Abdel-Rahman, M.H., Youssef, F.M.H., Saber, A.A., 2006. New static var compensator control strategy and coordination with under-load tap changer. IEEE Trans. Power Deliv., 21(3): 1630−1635. [
CrossRef
Google scholar
|
[3] |
Abido, M.A., 1999. Thyristor controlled phase shifter based stabilizer design using simulated annealing algorithm. Proc. Int. Conf. on Electric Power Engineering, p.307−312. [
CrossRef
Google scholar
|
[4] |
Abido, M.A., 2009. Power system stability enhancement using FACTS controllers: a review. Arab. J. Sci. Eng., 34(1B): 153−172.
|
[5] |
Abraham, R.J., Das, D., Patra, A., 2007. Effect of TCPS on oscillations in tie-power and area frequencies in an interconnected hydrothermal power system. IET Gener. Transm. Distr., 1(4): 632−639. [
CrossRef
Google scholar
|
[6] |
Acha, E., Fuerte-Esquivel, C.R., Ambríz-Pérez, H.,
|
[7] |
Acharya, N., Sode-Yome, A., Mithulananthan, N., 2005. Facts about flexible AC transmission systems (FACTS) controllers: practical installations and benefits. Proc. Australasian Universities Power Engineering Conf., p.533−538.
|
[8] |
Ahmad, S., Albatsh, F.M., Mekhilef, S.,
CrossRef
Google scholar
|
[9] |
Ahmad, S., Albatsh, F.M., Mekhilef, S.,
CrossRef
Google scholar
|
[10] |
Ahmad, S., Albatsh, F.M., Mekhilef, S.,
CrossRef
Google scholar
|
[11] |
Ahmad, S., Mekhilef, S., Albatsh, F.M., 2014d. Voltage stability improvement by placing unified power flow controller (UPFC) at suitable location in power system network. Proc. Saudi Arabia Smart Grid Conf., p.1−8.
|
[12] |
Ajami, A., Armaghan, M., 2013. A comparative study in power oscillation damping by STATCOM and SSSC based on the multiobjective PSO algorithm. Turk. J. Electr. Eng. Comput. Sci., 21: 213−224. [
CrossRef
Google scholar
|
[13] |
Alabduljabbar, A.A., Milanović, J.V., 2010. Assessment of techno-economic contribution of FACTS devices to power system operation. Electr. Power Syst. Res., 80(10): 1247−1255. [
CrossRef
Google scholar
|
[14] |
Albatsh, F., 2009. Multirate Ripple-Free Deadbeat Control. MS Thesis, Department of Electrical Engineering, Islamic University of Gaza, Gaza, Palestine.
|
[15] |
Albatsh, F.M., Ahmad, S., Mekhilef, S.,
CrossRef
Google scholar
|
[16] |
Albatsh, F.M., Ahmad, S., Mekhilef, S.,
|
[17] |
Albatsh, F.M., Ahmad, S., Mekhilef, S.,
CrossRef
Google scholar
|
[18] |
Albatsh, F.M., Ahmad, S., Mekhilef, S.,
|
[19] |
Ambríz-Pérez, H., Acha, E., Fuerte-Esquivel, C.R., 2000. Advanced SVC models for Newton-Raphson load flow and Newton optimal power flow studies. IEEE Trans. Power Syst., 15(1): 129−136. [
CrossRef
Google scholar
|
[20] |
Arzani, A., Jazaeri, M., Alinejad-Beromi, Y., 2008. Available transfer capability enhancement using series FACTS devices in a designed multi-machine power system. Proc. 43rd Int. Universities Power Engineering Conf., p.1−6. [
CrossRef
Google scholar
|
[21] |
Asare, P., Diez, T., Galli, A.,
|
[22] |
Babu, A.V.N., Sivanagaraju, S., 2012. Assessment of available transfer capability for power system network with multi-line FACTS device. Int. J. Electr. Eng., 5(1): 71−78.
|
[23] |
Bachmann, U., Berger, F., Reinisch, R.,
|
[24] |
Basu, M., 2011. Multi-objective optimal power flow with FACTS devices. Energy Conv. Manag., 52(2): 903−910. [
CrossRef
Google scholar
|
[25] |
Bhasaputra, P., Ongsakul, W., 2002. Optimal power flow with multi-type of FACTS devices by hybrid TS/SA approach. Proc. IEEE Int. Conf. on Industrial Technology, 1: 285−290. [
CrossRef
Google scholar
|
[26] |
Bollen, M.H., 1999. Understanding Power Quality Problems: Voltage Sags and Interruptions. Wiley-IEEE Press, New York, USA.
|
[27] |
Bulac, C., Diaconu, C., Eremia, M.,
CrossRef
Google scholar
|
[28] |
Burke, E., de Causmaecker, P., Berghe, G.V., 1999. A hybrid tabu search algorithm for the nurse rostering problem. Proc. 2nd Asia-Pacific Conf. on Simulated Evolution and Learning, p.187−194. [
CrossRef
Google scholar
|
[29] |
Cai, H., Qu, Z., Gan, D., 2002. Determination of the power transfer capacity of a UPFC with consideration of the system and equipment constraints and of installation locations. IEE Proc.-Gener. Transm. Distr., 149(1): 114−120. [
CrossRef
Google scholar
|
[30] |
Cai, L.J., Erlich, I., Stamtsis, G., 2004. Optimal choice and allocation of FACTS devices in deregulated electricity market using genetic algorithms. Proc. IEEE Power Systems Conf. and Exposition, p.201−207. [
CrossRef
Google scholar
|
[31] |
Chansareewittaya, S., Jirapong, P., 2010. Power transfer capability enhancement with multitype FACTS controllers using particle swarm optimization. Proc. IEEE Region 10 Conf., p.42−47. [
CrossRef
Google scholar
|
[32] |
Chansareewittaya, S., Jirapong, P., 2011. Power transfer capability enhancement with optimal maximum number of FACTS controllers using evolutionary programming. Proc. 37th Annual Conf. on IEEE Industrial Electronics Society, p.4733−4738. [
CrossRef
Google scholar
|
[33] |
Chansareewittaya, S., Jirapong, P., 2012. Total transfer capability enhancement with optimal number of FACTS controllers using hybrid TSSA. Proc. IEEE Southeastcon, p.1−7. [
CrossRef
Google scholar
|
[34] |
Chawla, S., Garg, S., Ahuja, B., 2009. Optimal location of series-shunt FACTS device for transmission line compensation. Proc. Int. Conf. on Control, Automation, Communication and Energy Conservation, p.1−6.
|
[35] |
Chengaiah, C., Satyanarayana, R.V.S., 2012. Power flow assessment in transmission lines using Simulink model with UPFC. Proc. Int. Conf. on Computing, Electronics and Electrical Technologies, p.151−155. [
CrossRef
Google scholar
|
[36] |
Chiang, H.D., Flueck, A.J., Shah, K.S.,
CrossRef
Google scholar
|
[37] |
Chung, C.Y., Wang, K.W., Tse, C.T.,
CrossRef
Google scholar
|
[38] |
Del Rosso, A.D., Canizares, C.A., Dona, V.M., 2003. A study of TCSC controller design for power system stability improvement. IEEE Trans. Power Syst., 18: 1487−1496.
|
[39] |
Eberhart, R., Kennedy, J., 1995. A new optimizer using particle swarm theory. Proc. 6th Int. Symp. on Micro Machine and Human Science, p.39−43.
|
[40] |
Eberhart, R.C., Shi, Y., 2001. Particle swarm optimization: developments, applications and resources. Proc. Congress on Evolutionary Computation, p.81−86. [
CrossRef
Google scholar
|
[41] |
El-Sadek, M.Z., Dessouky, M.M., Mahmoud, G.A.,
CrossRef
Google scholar
|
[42] |
Elsayed, B.A., Hassan, M.A., Mekhilef, S., 2013. Decoupled third-order fuzzy sliding model control for cart-inverted pendulum system. Appl. Math. Inform. Sci., 7(1): 193−201.
|
[43] |
Esmaeili, A., Esmaeili, S., 2012. A new multiobjective optimal allocation of multitype FACTS devices for total transfer capability enhancement and improving line congestion using the harmony search algorithm. Turk. J. Electr. Eng. Comput. Sci., 21: 957−979. [
CrossRef
Google scholar
|
[44] |
Farahmand, H., Rashidinejad, M., Mousavi, A.,
CrossRef
Google scholar
|
[45] |
Fardanesh, B., 2004. Optimal utilization, sizing, and steadystate performance comparison of multiconverter VSCbased FACTS controllers. IEEE Trans. Power Deliv., 19(3): 1321−1327. [
CrossRef
Google scholar
|
[46] |
Gama, C., Ängquist, L., Ingeström, G.,
|
[47] |
Ge, S.Y., Chung, T.S., 1999. Optimal active power flow incorporating power flow control needs in flexible AC transmission systems. IEEE Trans. Power Syst., 14(2): 738−744. [
CrossRef
Google scholar
|
[48] |
Gerbex, S., Cherkaoui, R., Germond, A.J., 2001. Optimal location of multi-type FACTS devices in a power system by means of genetic algorithms. IEEE Trans. Power Syst., 16(3): 537−544. [
CrossRef
Google scholar
|
[49] |
Gitizadeh, M., Kalantar, M., 2009. Optimum allocation of FACTS devices in FARS regional electric network using genetic algorithm based goal attainment. J. Zhejiang Univ.-Sci. A, 10(4): 478−487. [
CrossRef
Google scholar
|
[50] |
Goffe, W.L., Ferrier, G.D., Rogers, J., 1994. Global optimization of statistical functions with simulated annealing. J. Econom., 60(1−2): 65−99. [
CrossRef
Google scholar
|
[51] |
Goldberg, D.E., Holland, J.H., 1988. Genetic algorithms and machine learning. Mach. Learn., 3(2−3): 95−99. [
CrossRef
Google scholar
|
[52] |
Grigsby, L.L., 2012. Power System Stability and Control (3rd Ed.). CRC Press, USA.
|
[53] |
Grijalva, S., Sauer, P.W., 1999. Reactive power considerations in linear ATC computation. Proc. 32nd Annual Hawaii Int. Conf. on Systems Sciences, p.327−340. [
CrossRef
Google scholar
|
[54] |
Gyugyi, L., Schauder, C.D., Williams, S.L.,
CrossRef
Google scholar
|
[55] |
Hamoud, G., 2000. Assessment of available transfer capability of transmission systems. IEEE Trans. Power Syst., 15(1): 27−32. [
CrossRef
Google scholar
|
[56] |
Han, Y.S., Suh, I.Y., Kim, J.M.,
|
[57] |
Handfield, R., Walton, S.V., Sroufe, R.,
CrossRef
Google scholar
|
[58] |
Haque, M.H., 2004. Power flow control and voltage stability limit: regulating transformer versus UPFC. IEE Proc.-Gener. Transm. Distr., 151(3): 299−304. [
CrossRef
Google scholar
|
[59] |
Hashemi, Y., Kazemzadeh, R., Azizian, M.R.,
CrossRef
Google scholar
|
[60] |
Hashmani, A.A., Wang, Y., Lie, T.T., 2001. Design and application of a nonlinear coordinated excitation and TCPS controller in power systems. Proc. American Control Conf., p.811−816. [
CrossRef
Google scholar
|
[61] |
Hingorani, N.G., 1993. Flexible AC transmission. IEEE Spect., 30(4): 40−45. [
CrossRef
Google scholar
|
[62] |
Hingorani, N.G., Gyugyi, L., 1999. Understanding FACTS: Concept and Technology of Flexible AC Transmission Systems. Wiley-IEEE Press, New York, USA.
|
[63] |
Holmberg, D., Danielsson, M., Halvarsson, P.,
|
[64] |
Holmes, D.G., Lipo, T.A., 2003. Pulse Width Modulation for Power Converters: Principles and Practice. Wiley-IEEE Press, USA.
|
[65] |
Huang, Z., Ni, Y., Shen, C.,
CrossRef
Google scholar
|
[66] |
Idris, R.M., Khairuddin, A., Mustafa, M.W., 2009a. Optimal allocation of FACTS devices for ATC enhancement using bees algorithm. Int. Scholarly Sci. Res. Innov., 3(6): 257−264.
|
[67] |
Idris, R.M., Kharuddin, A., Mustafa, M.W., 2009b. Optimal choice of FACTS devices for ATC enhancement using bees algorithm. Proc. Australasian Universities Power Engineering Conf., p.1−6.
|
[68] |
Idris, R.M., Khairuddin, A., Mustafa, M.W., 2010. Optimal allocation of FACTS devices in deregulated electricity market using bees algorithm. WSEAS Trans. Power Syst., 5(2): 108−119.
|
[69] |
Islam, M., Mekhilef, S., Albatsh, F.M., 2014. An improved transformerless grid connected photovoltaic inverter with common mode leakage current elimination. Proc. 7th Int. Conf. on Power Electronics, Machines and Drives, p.1−6. [
CrossRef
Google scholar
|
[70] |
Iwamoto, S., Tamura, Y., 1981. A load flow calculation method for ill-conditioned power systems. IEEE Trans. Power App. Syst., PAS-100(4): 1736−1743. [
CrossRef
Google scholar
|
[71] |
Jain, T., Singh, S.N., Srivastava, S.C., 2009. Dynamic ATC enhancement through optimal placement of FACTS controllers. Electr. Power Syst. Res., 79(11): 1473−1482. [
CrossRef
Google scholar
|
[72] |
Jiang, X., Fang, X., Chow, J.H.,
CrossRef
Google scholar
|
[73] |
Jovcic, D., Pillai, G.N., 2005. Analytical modeling of TCSC dynamics. IEEE Trans. Power Deliv., 20: 1097−1104.
|
[74] |
Kakimoto, N., Phongphanphanee, A., 2003. Subsynchronous resonance damping control of thyristor-controlled series capacitor. IEEE Trans. Power Deliv., 18: 1051−1059.
|
[75] |
Kannan, S., Jayaram, S., Salama, M.M.A., 2004. Real and reactive power coordination for a unified power flow controller. IEEE Trans. Power Syst., 19(3): 1454−1461. [
CrossRef
Google scholar
|
[76] |
Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. Proc. IEEE Int. Conf. on Neural Networks, p.1942−1948.
|
[77] |
Khaburi, M.A., Haghifam, M.R., 2010. A probabilistic modeling based approach for total transfer capability enhancement using FACTS devices. Int. J. Electr. Power Energy Syst., 32(1): 12−16. [
CrossRef
Google scholar
|
[78] |
Klir, G.J., Yuan, B., 1995. Fuzzy Sets and Fuzzy Logic: Theory and Applications. Vol. 4. Prentice Hall, New Jersey, USA.
|
[79] |
Komoni, V., Krasniqi, I., Kabashi, G.,
CrossRef
Google scholar
|
[80] |
Kumar, A., Kumar, J., 2012. Comparison of UPFC and SEN transformer for ATC enhancement in restructured electricity markets. Int. J. Electr. Power Energy Syst., 41(1): 96−104. [
CrossRef
Google scholar
|
[81] |
Kumar, A., Kumar, J., 2013. ATC determination with FACTS devices using PTDFs approach for multi-transactions in competitive electricity markets. Int. J. Electr. Power Energy Syst., 44(1): 308−317. [
CrossRef
Google scholar
|
[82] |
Lamoree, J., Mueller, D., Vinett, P.,
|
[83] |
Leung, H.C., Chung, T.S., 2000. Optimal power flow with a versatile FACTS controller by genetic algorithm approach. Proc. 5th Int. Conf. on Adavances in Power System Control, Operation and Management, p.178−183. [
CrossRef
Google scholar
|
[84] |
Li, N., Xu, Y., Chen, H., 2000. FACTS-based power flow control in interconnected power system. IEEE Trans. Power Syst., 15(1): 257−262. [
CrossRef
Google scholar
|
[85] |
Lin, H.X., 2001. Main problems of modern power quality. Power Syst. Technol., 25(10): 5−12 (in Chinese).
|
[86] |
Ma, J.Z., Wu, M.L., Yang, S.B., 2009. The application of SVC for the power quality control of electric railways. Proc. Int. Conf. on Sustainable Power Generation and Supply, p.1−4. [
CrossRef
Google scholar
|
[87] |
Madhusudhanarao, G., Ramarao, P.V., Kumar, T.J., 2010. Optimal location of TCSC and SVC for enhancement of ATC in a de-regulated environment using RGA. Proc. IEEE Int. Conf. on Computational Intelligence and Computing Research, p.1−6. [
CrossRef
Google scholar
|
[88] |
Mahdavi, M., Fesanghary, M., Damangir, E., 2007. An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput., 188(2): 1567−1579. [
CrossRef
Google scholar
|
[89] |
Manikandan, B., 2010. Enhancement of Available Transfer Capability with FACTS Device in the Competitive Power Market. Available from
|
[90] |
Manikandan, B.V., Raja, S.C., Venkatesh, P., 2011. Available transfer capability enhancement with FACTS devices in the deregulated electricity market. J. Electr. Eng. Technol., 6(1): 14−24.
|
[91] |
Manohar, J.N., Amarnath, J., 2012. Statistical analysis of power system on enhancement of available transfer capability-applying FACTS. Int. J. Multidiscip. Sci. Eng., 3(7): 33−37.
|
[92] |
Masuta, T., Yokoyama, A., 2006. ATC enhancement considering transient stability based on optimal power flow control by UPFC. Proc. Int. Conf. on Power System Technology, p.1−6. [
CrossRef
Google scholar
|
[93] |
Menniti, D., Scordino, N., Sorrentino, N., 2006. A new method for SSSC optimal location to improve power system available transfer capability. Proc. IEEE PES Power Systems Conf. and Exposition, p.938−945. [
CrossRef
Google scholar
|
[94] |
Moraglio, A., di Chio, C., Poli, R., 2007. Geometric particle swarm optimisation. Proc. 10th European Conf. on Genetic Programming, p.125−136. [
CrossRef
Google scholar
|
[95] |
Mori, H., Goto, Y., 2000. A parallel tabu search based method for determining optimal allocation of FACTS in power systems. Proc. Int. Conf. on Power System Technology, p.1077−1082. [
CrossRef
Google scholar
|
[96] |
Motoki, H., Yokoyama, A., 2004. Study on optimal power flow control for ATC enhancement by UPFC and its performance evaluation. Proc. Annual Conf. of Power & Energy Society.
|
[97] |
Nagalakshmi, S., Kamaraj, N., 2012. Comparison of computational intelligence algorithms for loadability enhancement of restructured power system with FACTS devices. Swarm Evol. Comput., 5: 17−27. [
CrossRef
Google scholar
|
[98] |
Naidoo, R., Pillay, P., 2007. A new method of voltage sag and swell detection. IEEE Trans. Power Deliv., 22(2): 1056−1063. [
CrossRef
Google scholar
|
[99] |
Naidu, K., Mokhlis, H., Bakar, A.H.A., 2014. Multiobjective optimization using weighted sum artificial bee colony algorithm for load frequency control. Int. J. Electr. Power Energy Syst., 55: 657−667. [
CrossRef
Google scholar
|
[100] |
Naik, R.S., Vaisakh, K., Anand, K., 2010. Application of TCSC for enhancement of ATC with PTDF in power transmission system. Proc. Int. Conf. on Intelligent and Advanced Systems, p.1−6. [
CrossRef
Google scholar
|
[101] |
Nimje, A.A., Panigrahi, C.K., Mohanty, A.K., 2011. Enhanced power transfer capability by using SSSC. J. Mech. Eng. Res., 3(2): 48−56.
|
[102] |
Noroozian, M., Petersson, N.A., Thorvaldson, B.,
CrossRef
Google scholar
|
[103] |
Omoigui, M., Ojo, O., Karugaba, S., 2008. Analysis of multiterminal unified power flow controller for power transfer. Proc. 40th North American Power Symp., p.1−7. [
CrossRef
Google scholar
|
[104] |
Ongsakul, W., Bhasaputra, P., 2002. Optimal power flow with FACTS devices by hybrid TS/SA approach. Int. J. Electr. Power Energy Syst., 24(10): 851−857. [
CrossRef
Google scholar
|
[105] |
Ongsakul, W., Jirapong, P., 2005. Optimal allocation of FACTS devices to enhance total transfer capability using evolutionary programming. Proc. IEEE Int. Symp. on Circuits and Systems, p.4175−4178. [
CrossRef
Google scholar
|
[106] |
Ooi, B.T., Kazerani, M., Marceau, R.,
CrossRef
Google scholar
|
[107] |
Oskoui, A., Mathew, B., Hasler, J.,
CrossRef
Google scholar
|
[108] |
Ou, Y., Singh, C., 2002. Assessment of available transfer capability and margins. IEEE Trans. Power Syst., 17(2): 463−468. [
CrossRef
Google scholar
|
[109] |
Padiyar, K.R., 2007. FACTS Controllers in Power Transmission and Distribution. Motilal UK Books of India, India.
|
[110] |
Panda, S., Padhy, N.P., 2008. Comparison of particle swarm optimization and genetic algorithm for FACTS-based controller design. Appl. Soft Comput., 8(4): 1418−1427. [
CrossRef
Google scholar
|
[111] |
Pandey, R.K., Chaitanya, D.V.S.B., 2012. An effective approach for ATC enhancement with FACTS device—a case study. Proc. Int. Conf. on Advances in Power Conversion and Energy Technologies, p.1−6. [
CrossRef
Google scholar
|
[112] |
Papic, I., Zunko, P., Povh, D.,
CrossRef
Google scholar
|
[113] |
Parsopoulos, K.E., Vrahatis, M.N., 2002. Particle swarm optimization method for constrained optimization problems. Intell. Technol. Theory Appl., 76: 214−220.
|
[114] |
Partovi, F.Y., Burton, J., Banerjee, A., 1990. Application of analytical hierarchy process in operations management. Int. J. Oper. Prod. Manag., 10(3): 5−19. [
CrossRef
Google scholar
|
[115] |
Paserba, J.J., 2003. How FACTS controllers-benefit AC transmission systems. Proc. IEEE PES Transmission and Distribution Conf. and Exposition, p.949−956. [
CrossRef
Google scholar
|
[116] |
Perkins, B.K., Iravani, M.R., 1997. Dynamic modeling of a TCSC with application to SSR analysis. IEEE Trans. Power Syst., 12: 1619−1625.
|
[117] |
Pham, D., Ghanbarzadeh, A., Koc, E.,
|
[118] |
Pham, D.T., Soroka, A.J., Ghanbarzadeh, A.,
CrossRef
Google scholar
|
[119] |
Pilotto, L.A.S., Bianco, A., Long, W.F.,
|
[120] |
Price, K., Storn, R.M., Lampinen, J.A., 2005. Differential Evolution: a Practical Approach to Global Optimization. Springer, Germany. [
CrossRef
Google scholar
|
[121] |
Qin, A.K., Huang, V.L., Suganthan, P.N., 2009. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput., 13(2): 398−417. [
CrossRef
Google scholar
|
[122] |
Ramesh, M., Laxmi, A.J., 2012. Stabilty of power transmission capability of HVDC system using FACTS controllers. Proc. Int. Conf. on Computer Communication and Informatics, p.1−7. [
CrossRef
Google scholar
|
[123] |
Ramey, D.G., Henderson, M., 2007. Overview of a special publication on transmission system application requirements for FACTS controllers. Proc. Power Engineering Society General Meeting, p.1−5.
|
[124] |
Rao, K.S., Kumar, B.K., 2011. Placement of SVC for minimizing losses and maximizing total transfer capability using particle swarm optimization. Proc. IET Conf. on Renewable Power Generation, p.1−5. [
CrossRef
Google scholar
|
[125] |
Rashed, G.I., Sun, Y., Shaheen, H.I., 2012. Optimal location and parameter setting of TCSC for loss minimization based on differential evolution and genetic algorithm. Phys. Proced., 33: 1864−1878. [
CrossRef
Google scholar
|
[126] |
Rashidinejad, M., Farahmand, H., Fotuhi-Firuzabad, M.,
CrossRef
Google scholar
|
[127] |
Ren, H., Watts, D., Mi, Z.,
CrossRef
Google scholar
|
[128] |
Renz, B.A., Keri, A., Mehraban, A.S.,
CrossRef
Google scholar
|
[129] |
Rewatkar, S.B., Kewte, S.G., 2009. Role of power electronics based FACTS controller SVC for mitigation of power quality problems. Proc. 2nd Int. Conf. on Emerging Trends in Engineering and Technology, p.731−735. [
CrossRef
Google scholar
|
[130] |
Saaty, T.L., 1977. A scaling method for priorities in hierarchical structures. J. Math. Psychol., 15(3): 234−281. [
CrossRef
Google scholar
|
[131] |
Sahadat, M.N., Al Masood, N., Hossain, M.S.,
CrossRef
Google scholar
|
[132] |
Saltelli, A., Chan, K., Scott, E.M., 2000. Sensitivity Analysis. Wiley, New York, USA.
|
[133] |
Sannino, A., Svensson, J., Larsson, T., 2003. Powerelectronic solutions to power quality problems. Electr. Power Syst. Res., 66(1): 71−82. [
CrossRef
Google scholar
|
[134] |
Sawhney, H., Jeyasurya, B., 2004. Application of unified power flow controller for available transfer capability enhancement. Electr. Power Syst. Res., 69(2−3): 155−160. [
CrossRef
Google scholar
|
[135] |
Schauder, C., Mehta, H., 1993. Vector analysis and control of advanced static VAR compensators. IEE Proc. C, 140(4): 299−306. [
CrossRef
Google scholar
|
[136] |
Sen, K.K., 1998. SSSC-static synchronous series compensator: theory, modeling, and application. IEEE Trans. Power Deliv., 13(1): 241−246. [
CrossRef
Google scholar
|
[137] |
Sen, K.K., Stacey, E.J., 1998. UPFC-unified power flow controller: theory, modeling, and applications. IEEE Trans. Power Deliv., 13(4): 1453−1460. [
CrossRef
Google scholar
|
[138] |
Shakarami, M.R., Kazemi, A., 2010. Robust design of static synchronous series compensator-based stabilizer for damping inter-area oscillations using quadratic mathematical programming. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 11(4): 296−306. [
CrossRef
Google scholar
|
[139] |
Shirmohammadi, D., Hong, H.W., Semlyen, A.,
|
[140] |
Siemens, 2012. Discover the World of FACTS Technology.
|
[141] |
Singh, B., Saha, R., 2008. Enhancing power transfer capacity of transmission system by a reduced magnetics based 48-pulse STATCOM controller. Proc. Joint Int. Conf. on Power System Technology and IEEE Power India Conf., p.1−8. [
CrossRef
Google scholar
|
[142] |
Sood, V.K., 2004. HVDC and FACTS Controllers: Applications of Static Converters in Power Systems. Springer.
|
[143] |
Sookananta, B., Galloway, S.J., Burt, G.M.,
|
[144] |
Spee, R., Zhu, W., 1992. Flexible AC transmission systems simulation and control. Proc. 3rd AFRICON Conf., p.65−68. [
CrossRef
Google scholar
|
[145] |
Srinu Naik, R., Vaisakh, K., Anand, K., 2010. Determination of ATC with PTDF using linear methods in presence of TCSC. Proc. 2nd Int. Conf. on Computer and Automation Engineering, p.146−151. [
CrossRef
Google scholar
|
[146] |
Subcommittee, P.M., 1979. IEEE reliability test system. IEEE Trans. Power App. Syst., 6: 2047−2054.
|
[147] |
Sun, J., Czarkowski, D., Zabar, Z., 2002. Voltage flicker mitigation using PWM-based distribution STATCOM. Proc. IEEE Power Engineering Society Summer Meeting, p.616−621. [
CrossRef
Google scholar
|
[148] |
Takasaki, M., 2006. Power transfer capability enhancement with UPFC under circumstances of uncertain power flow pattern. Proc. IEEE PES Transmission and Distribution Conf. and Exhibition, p.659−665. [
CrossRef
Google scholar
|
[149] |
Tang, B.F., Fan, H., Wang, X.W.,
|
[150] |
Trzynadlowski, A.M., Blaabjerg, F., Pedersen, J.K.,
CrossRef
Google scholar
|
[151] |
Tsoulos, I.G., 2008. Modifications of real code genetic algorithm for global optimization. Appl. Math. Comput., 203(2): 598−607. [
CrossRef
Google scholar
|
[152] |
van Laarhoven, P.J., Aarts, E.H., 1987. Simulated Annealing. Springer.
|
[153] |
Vara Prasad, J., Sai Ram, I., Jayababu, B., 2011. Genetically optimized FACTS controllers for available transfer capability enhancement. Int. J. Comput. Appl., 19(4): 23−27.
|
[154] |
Vasquez-Arnez, R.L., Zanetta, L.C., 2008. A novel approach for modeling the steady-state VSC-based multiline FACTS controllers and their operational constraints. IEEE Trans. Power Deliv., 23(1): 457−464. [
CrossRef
Google scholar
|
[155] |
Venkatesh, B., George, M.K., Gooi, H.B., 2004. Fuzzy OPF incorporating UPFC. IEE Proc. C, 151(5): 625−629. [
CrossRef
Google scholar
|
[156] |
Venter, G., Sobieszczanski-Sobieski, J., 2003. Particle swarm optimization. AIAA J., 41(8): 1583−1589.
|
[157] |
Visakha, K., Thukaram, D., Jenkins, L., 2004. Application of UPFC for system security improvement under normal and network contingencies. Electr. Power Syst. Res., 70(1): 46−55. [
CrossRef
Google scholar
|
[158] |
Wang, H.F., Swift, F.J., Li, M., 1997. Analysis of thyristorcontrolled phase shifter applied in damping power system oscillations. Int. J. Electr. Power Energy Syst., 19(1): 1−9. [
CrossRef
Google scholar
|
[159] |
Watts, D., Ren, H., 2007. FACTS: characteristics, applications and economic value: a literature review. Proc. 7th IASTED Int. Conf. on Power and Energy Systems, p.450−455.
|
[160] |
Xiong, W.Q., Zhang, Y.P., Wei, P., 2004. An improved realcode genetic algorithm. Proc. Int. Conf. on Machine Learning and Cybernetics, p.2361−2364.
|
[161] |
Yang, H.T., Yang, P.C., Huang, C.L., 1996. Evolutionary programming based economic dispatch for units with non-smooth fuel cost functions. IEEE Trans. Power Syst., 11(1): 112−118. [
CrossRef
Google scholar
|
[162] |
Yousefi-Talouki, A., Gholamian, S.A., Hosseini, M.,
|
[163] |
Yuryevich, J., Wong, K.P., 1999. Evolutionary programming based optimal power flow algorithm. IEEE Trans. Power Syst., 14(4): 1245−1250. [
CrossRef
Google scholar
|
[164] |
Zhang, X.P., Handschin, E.J., 2001. Advanced implementation of UPFC in a nonlinear interior-point OPF. IEE Proc. C, 148(5): 489−496. [
CrossRef
Google scholar
|
[165] |
Zhang, X.P., Handschin, E., Yao, M., 2004. Multi-control functional static synchronous compensator (STATCOM) in power system steady-state operations. Electr. Power Syst. Res., 72(3): 269−278. [
CrossRef
Google scholar
|
[166] |
Zhang, X.P., Rehtanz, C., Pal, B., 2012. Flexible AC Transmission Systems: Modelling and Control. Springer.
|
[167] |
Zhang, Y.K., Zhang, Y., 2006. A novel power injection model of embedded SSSC with multi-control modes for power flow analysis inclusive of practical constraints. Electr. Power Syst. Res., 76(5): 374−381. [
CrossRef
Google scholar
|
[168] |
Zheng, J.G., Wang, X., 2011. Diversity composite differential evolution algorithm for constrained optimization problems. Comput. Integ. Manuf. Syst., 17(11): 2447−2456.
|
[169] |
Zheng, Z., Yang, G., Geng, H., 2013. Coordinated control of a doubly-fed induction generator-based wind farm and a static synchronous compensator for low voltage ridethrough grid code compliance during asymmetrical grid faults. Energies, 6(9): 4660−4681. [
CrossRef
Google scholar
|
[170] |
Zhong, W.L., Wang, H.S., Zhang, J.,
|
/
〈 | 〉 |