Enhancing power transfer capability through flexible AC transmission system devices: a review

Fadi M. ALBATSH, Saad MEKHILEF, Shameem AHMAD, H. MOKHLIS, M. A. HASSAN

PDF(641 KB)
PDF(641 KB)
Front. Inform. Technol. Electron. Eng ›› 2015, Vol. 16 ›› Issue (8) : 658-678. DOI: 10.1631/FITEE.1500019
Orginal Article
Orginal Article

Enhancing power transfer capability through flexible AC transmission system devices: a review

Author information +
History +

Abstract

Global demand for power has significantly increased, but power generation and transmission capacities have not increased proportionally with this demand. As a result, power consumers suffer from various problems, such as voltage and frequency instability and power quality issues. To overcome these problems, the capacity for available power transfer of a transmission network should be enhanced. Researchers worldwide have addressed this issue by using flexible AC transmission system (FACTS) devices. We have conducted a comprehensive review of how FACTS controllers are used to enhance the available transfer capability (ATC) and power transfer capability (PTC) of power system networks. This review includes a discussion of the classification of different FACTS devices according to different factors. The popularity and applications of these devices are discussed together with relevant statistics. The operating principles of six major FACTS devices and their application in increasing ATC and PTC are also presented. Finally, we evaluate the performance of FACTS devices in ATC and PTC improvement with respect to different control algorithms.

Keywords

FACTS devices / Available transfer capability / Power transfer capability / Artificial intelligence

Cite this article

Download citation ▾
Fadi M. ALBATSH, Saad MEKHILEF, Shameem AHMAD, H. MOKHLIS, M. A. HASSAN. Enhancing power transfer capability through flexible AC transmission system devices: a review. Front. Inform. Technol. Electron. Eng, 2015, 16(8): 658‒678 https://doi.org/10.1631/FITEE.1500019

References

[1]
ABB, 2012. Flexible Alternating Current Transmission Systems (FACTS). Available from https://new.abb.com/tw/about/publication/abb-connects-2017-02/svc.
[2]
Abdel-Rahman, M.H., Youssef, F.M.H., Saber, A.A., 2006. New static var compensator control strategy and coordination with under-load tap changer. IEEE Trans. Power Deliv., 21(3): 1630−1635. [
CrossRef Google scholar
[3]
Abido, M.A., 1999. Thyristor controlled phase shifter based stabilizer design using simulated annealing algorithm. Proc. Int. Conf. on Electric Power Engineering, p.307−312. [
CrossRef Google scholar
[4]
Abido, M.A., 2009. Power system stability enhancement using FACTS controllers: a review. Arab. J. Sci. Eng., 34(1B): 153−172.
[5]
Abraham, R.J., Das, D., Patra, A., 2007. Effect of TCPS on oscillations in tie-power and area frequencies in an interconnected hydrothermal power system. IET Gener. Transm. Distr., 1(4): 632−639. [
CrossRef Google scholar
[6]
Acha, E., Fuerte-Esquivel, C.R., Ambríz-Pérez, H., , 2004. FACTS: Modelling and Simulation in Power Networks. Wiley, UK.
[7]
Acharya, N., Sode-Yome, A., Mithulananthan, N., 2005. Facts about flexible AC transmission systems (FACTS) controllers: practical installations and benefits. Proc. Australasian Universities Power Engineering Conf., p.533−538.
[8]
Ahmad, S., Albatsh, F.M., Mekhilef, S., , 2014a. A placement method of fuzzy based unified power flow controller to enhance voltage stability margin. Proc. 16th European Conf. on Power Electronics and Applications, p.1−10. [
CrossRef Google scholar
[9]
Ahmad, S., Albatsh, F.M., Mekhilef, S., , 2014b. An approach to improve active power flow capability by using dynamic unified power flow controller. Proc. IEEE Innovative Smart Grid Technologies-Asia, p.249−254. [
CrossRef Google scholar
[10]
Ahmad, S., Albatsh, F.M., Mekhilef, S., , 2014c. Fuzzy based controller for dynamic unified power flow controller to enhance power transfer capability. Energy Conv. Manag., 79: 652−665. [
CrossRef Google scholar
[11]
Ahmad, S., Mekhilef, S., Albatsh, F.M., 2014d. Voltage stability improvement by placing unified power flow controller (UPFC) at suitable location in power system network. Proc. Saudi Arabia Smart Grid Conf., p.1−8.
[12]
Ajami, A., Armaghan, M., 2013. A comparative study in power oscillation damping by STATCOM and SSSC based on the multiobjective PSO algorithm. Turk. J. Electr. Eng. Comput. Sci., 21: 213−224. [
CrossRef Google scholar
[13]
Alabduljabbar, A.A., Milanović, J.V., 2010. Assessment of techno-economic contribution of FACTS devices to power system operation. Electr. Power Syst. Res., 80(10): 1247−1255. [
CrossRef Google scholar
[14]
Albatsh, F., 2009. Multirate Ripple-Free Deadbeat Control. MS Thesis, Department of Electrical Engineering, Islamic University of Gaza, Gaza, Palestine.
[15]
Albatsh, F.M., Ahmad, S., Mekhilef, S., , 2014. D-Q model of fuzzy based UPFC to control power flow in transmission network. Proc. 7th IET Int. Conf. on Power Electronics, Machines and Drives, p.1−6. [
CrossRef Google scholar
[16]
Albatsh, F.M., Ahmad, S., Mekhilef, S., , 2015a. Dynamic power flow control for transmission lines using D-Q fuzzy based unified power flow controller. Appl. Math. Inform. Sci., 9(12): 1−15.
[17]
Albatsh, F.M., Ahmad, S., Mekhilef, S., , 2015b. Optimal placement of unified power flow controllers to improve dynamic voltage stability using power system variable based voltage stability indices. PLoS One, 10(4): 1−32. [
CrossRef Google scholar
[18]
Albatsh, F.M., Ahmad, S., Mekhilef, S., , 2015c. Power quality improvement in transmission network using fuzzy logic based unified power flow controller. Proc. IEEE Int. Conf. on Industrial Technology, p.1−6.
[19]
Ambríz-Pérez, H., Acha, E., Fuerte-Esquivel, C.R., 2000. Advanced SVC models for Newton-Raphson load flow and Newton optimal power flow studies. IEEE Trans. Power Syst., 15(1): 129−136. [
CrossRef Google scholar
[20]
Arzani, A., Jazaeri, M., Alinejad-Beromi, Y., 2008. Available transfer capability enhancement using series FACTS devices in a designed multi-machine power system. Proc. 43rd Int. Universities Power Engineering Conf., p.1−6. [
CrossRef Google scholar
[21]
Asare, P., Diez, T., Galli, A., , 1994. An Overview of Flexible AC Transmission Systems. Technical Report, Department of Electrical and Computer Engineering, Purdue University, USA.
[22]
Babu, A.V.N., Sivanagaraju, S., 2012. Assessment of available transfer capability for power system network with multi-line FACTS device. Int. J. Electr. Eng., 5(1): 71−78.
[23]
Bachmann, U., Berger, F., Reinisch, R., , 2002. Possibilities of multifunctional FACTS application in the European electric power system under the changing conditions of the liberalized electricity market. CIGRE Session, Germany.
[24]
Basu, M., 2011. Multi-objective optimal power flow with FACTS devices. Energy Conv. Manag., 52(2): 903−910. [
CrossRef Google scholar
[25]
Bhasaputra, P., Ongsakul, W., 2002. Optimal power flow with multi-type of FACTS devices by hybrid TS/SA approach. Proc. IEEE Int. Conf. on Industrial Technology, 1: 285−290. [
CrossRef Google scholar
[26]
Bollen, M.H., 1999. Understanding Power Quality Problems: Voltage Sags and Interruptions. Wiley-IEEE Press, New York, USA.
[27]
Bulac, C., Diaconu, C., Eremia, M., , 2009. Power transfer capacity enhancement using SVC. Proc. IEEE Bucharest PowerTech, p.1−5. [
CrossRef Google scholar
[28]
Burke, E., de Causmaecker, P., Berghe, G.V., 1999. A hybrid tabu search algorithm for the nurse rostering problem. Proc. 2nd Asia-Pacific Conf. on Simulated Evolution and Learning, p.187−194. [
CrossRef Google scholar
[29]
Cai, H., Qu, Z., Gan, D., 2002. Determination of the power transfer capacity of a UPFC with consideration of the system and equipment constraints and of installation locations. IEE Proc.-Gener. Transm. Distr., 149(1): 114−120. [
CrossRef Google scholar
[30]
Cai, L.J., Erlich, I., Stamtsis, G., 2004. Optimal choice and allocation of FACTS devices in deregulated electricity market using genetic algorithms. Proc. IEEE Power Systems Conf. and Exposition, p.201−207. [
CrossRef Google scholar
[31]
Chansareewittaya, S., Jirapong, P., 2010. Power transfer capability enhancement with multitype FACTS controllers using particle swarm optimization. Proc. IEEE Region 10 Conf., p.42−47. [
CrossRef Google scholar
[32]
Chansareewittaya, S., Jirapong, P., 2011. Power transfer capability enhancement with optimal maximum number of FACTS controllers using evolutionary programming. Proc. 37th Annual Conf. on IEEE Industrial Electronics Society, p.4733−4738. [
CrossRef Google scholar
[33]
Chansareewittaya, S., Jirapong, P., 2012. Total transfer capability enhancement with optimal number of FACTS controllers using hybrid TSSA. Proc. IEEE Southeastcon, p.1−7. [
CrossRef Google scholar
[34]
Chawla, S., Garg, S., Ahuja, B., 2009. Optimal location of series-shunt FACTS device for transmission line compensation. Proc. Int. Conf. on Control, Automation, Communication and Energy Conservation, p.1−6.
[35]
Chengaiah, C., Satyanarayana, R.V.S., 2012. Power flow assessment in transmission lines using Simulink model with UPFC. Proc. Int. Conf. on Computing, Electronics and Electrical Technologies, p.151−155. [
CrossRef Google scholar
[36]
Chiang, H.D., Flueck, A.J., Shah, K.S., , 1995. CPFLOW: a practical tool for tracing power system steady-state stationary behavior due to load and generation variations. IEEE Trans. Power Syst., 10(2): 623−634. [
CrossRef Google scholar
[37]
Chung, C.Y., Wang, K.W., Tse, C.T., , 2002. Powersystem stabilizer (PSS) design by probabilistic sensitivity indexes (PSIs). IEEE Trans. Power Syst., 17(3): 688−693. [
CrossRef Google scholar
[38]
Del Rosso, A.D., Canizares, C.A., Dona, V.M., 2003. A study of TCSC controller design for power system stability improvement. IEEE Trans. Power Syst., 18: 1487−1496.
[39]
Eberhart, R., Kennedy, J., 1995. A new optimizer using particle swarm theory. Proc. 6th Int. Symp. on Micro Machine and Human Science, p.39−43.
[40]
Eberhart, R.C., Shi, Y., 2001. Particle swarm optimization: developments, applications and resources. Proc. Congress on Evolutionary Computation, p.81−86. [
CrossRef Google scholar
[41]
El-Sadek, M.Z., Dessouky, M.M., Mahmoud, G.A., , 1997. Enhancement of steady-state voltage stability by static VAR compensators. Electr. Power Syst. Res., 43(3): 179−185. [
CrossRef Google scholar
[42]
Elsayed, B.A., Hassan, M.A., Mekhilef, S., 2013. Decoupled third-order fuzzy sliding model control for cart-inverted pendulum system. Appl. Math. Inform. Sci., 7(1): 193−201.
[43]
Esmaeili, A., Esmaeili, S., 2012. A new multiobjective optimal allocation of multitype FACTS devices for total transfer capability enhancement and improving line congestion using the harmony search algorithm. Turk. J. Electr. Eng. Comput. Sci., 21: 957−979. [
CrossRef Google scholar
[44]
Farahmand, H., Rashidinejad, M., Mousavi, A., , 2012. Hybrid mutation particle swarm optimisation method for available transfer capability enhancement. Int. J. Electr. Power Energy Syst., 42(1): 240−249. [
CrossRef Google scholar
[45]
Fardanesh, B., 2004. Optimal utilization, sizing, and steadystate performance comparison of multiconverter VSCbased FACTS controllers. IEEE Trans. Power Deliv., 19(3): 1321−1327. [
CrossRef Google scholar
[46]
Gama, C., Ängquist, L., Ingeström, G., , 2000. Commissioning and operative experience of TCSC for damping power oscillation in the Brazilian north-south interconnection. Proc. CIGRE Session, Paper 14−104.
[47]
Ge, S.Y., Chung, T.S., 1999. Optimal active power flow incorporating power flow control needs in flexible AC transmission systems. IEEE Trans. Power Syst., 14(2): 738−744. [
CrossRef Google scholar
[48]
Gerbex, S., Cherkaoui, R., Germond, A.J., 2001. Optimal location of multi-type FACTS devices in a power system by means of genetic algorithms. IEEE Trans. Power Syst., 16(3): 537−544. [
CrossRef Google scholar
[49]
Gitizadeh, M., Kalantar, M., 2009. Optimum allocation of FACTS devices in FARS regional electric network using genetic algorithm based goal attainment. J. Zhejiang Univ.-Sci. A, 10(4): 478−487. [
CrossRef Google scholar
[50]
Goffe, W.L., Ferrier, G.D., Rogers, J., 1994. Global optimization of statistical functions with simulated annealing. J. Econom., 60(1−2): 65−99. [
CrossRef Google scholar
[51]
Goldberg, D.E., Holland, J.H., 1988. Genetic algorithms and machine learning. Mach. Learn., 3(2−3): 95−99. [
CrossRef Google scholar
[52]
Grigsby, L.L., 2012. Power System Stability and Control (3rd Ed.). CRC Press, USA.
[53]
Grijalva, S., Sauer, P.W., 1999. Reactive power considerations in linear ATC computation. Proc. 32nd Annual Hawaii Int. Conf. on Systems Sciences, p.327−340. [
CrossRef Google scholar
[54]
Gyugyi, L., Schauder, C.D., Williams, S.L., , 1995. The unified power flow controller: a new approach to power transmission control. IEEE Trans. Power Deliv., 10(2): 1085−1097. [
CrossRef Google scholar
[55]
Hamoud, G., 2000. Assessment of available transfer capability of transmission systems. IEEE Trans. Power Syst., 15(1): 27−32. [
CrossRef Google scholar
[56]
Han, Y.S., Suh, I.Y., Kim, J.M., , 2004. Commissioning and testing of the KangJin UPFC in Korea. Proc. CIGRE Session.
[57]
Handfield, R., Walton, S.V., Sroufe, R., , 2002. Applying environmental criteria to supplier assessment: a study in the application of the analytical hierarchy process. Eur. J. Oper. Res., 141(1): 70−87. [
CrossRef Google scholar
[58]
Haque, M.H., 2004. Power flow control and voltage stability limit: regulating transformer versus UPFC. IEE Proc.-Gener. Transm. Distr., 151(3): 299−304. [
CrossRef Google scholar
[59]
Hashemi, Y., Kazemzadeh, R., Azizian, M.R., , 2012. Improving power system dynamic performance using attuned design of dual-input PSS and UPFC PSD controller. Front. Electr. Electron. Eng., 7(4): 416−426. [
CrossRef Google scholar
[60]
Hashmani, A.A., Wang, Y., Lie, T.T., 2001. Design and application of a nonlinear coordinated excitation and TCPS controller in power systems. Proc. American Control Conf., p.811−816. [
CrossRef Google scholar
[61]
Hingorani, N.G., 1993. Flexible AC transmission. IEEE Spect., 30(4): 40−45. [
CrossRef Google scholar
[62]
Hingorani, N.G., Gyugyi, L., 1999. Understanding FACTS: Concept and Technology of Flexible AC Transmission Systems. Wiley-IEEE Press, New York, USA.
[63]
Holmberg, D., Danielsson, M., Halvarsson, P., , 1998. The stode thyristor controlled series capacitor. Proc. CIGRE Session.
[64]
Holmes, D.G., Lipo, T.A., 2003. Pulse Width Modulation for Power Converters: Principles and Practice. Wiley-IEEE Press, USA.
[65]
Huang, Z., Ni, Y., Shen, C., , 2000. Application of unified power flow controller in interconnected power systems—modeling, interface, control strategy, and case study. IEEE Trans. Power Syst., 15(2): 817−824. [
CrossRef Google scholar
[66]
Idris, R.M., Khairuddin, A., Mustafa, M.W., 2009a. Optimal allocation of FACTS devices for ATC enhancement using bees algorithm. Int. Scholarly Sci. Res. Innov., 3(6): 257−264.
[67]
Idris, R.M., Kharuddin, A., Mustafa, M.W., 2009b. Optimal choice of FACTS devices for ATC enhancement using bees algorithm. Proc. Australasian Universities Power Engineering Conf., p.1−6.
[68]
Idris, R.M., Khairuddin, A., Mustafa, M.W., 2010. Optimal allocation of FACTS devices in deregulated electricity market using bees algorithm. WSEAS Trans. Power Syst., 5(2): 108−119.
[69]
Islam, M., Mekhilef, S., Albatsh, F.M., 2014. An improved transformerless grid connected photovoltaic inverter with common mode leakage current elimination. Proc. 7th Int. Conf. on Power Electronics, Machines and Drives, p.1−6. [
CrossRef Google scholar
[70]
Iwamoto, S., Tamura, Y., 1981. A load flow calculation method for ill-conditioned power systems. IEEE Trans. Power App. Syst., PAS-100(4): 1736−1743. [
CrossRef Google scholar
[71]
Jain, T., Singh, S.N., Srivastava, S.C., 2009. Dynamic ATC enhancement through optimal placement of FACTS controllers. Electr. Power Syst. Res., 79(11): 1473−1482. [
CrossRef Google scholar
[72]
Jiang, X., Fang, X., Chow, J.H., , 2008. A novel approach for modeling voltage-sourced converter-based FACTS controllers. IEEE Trans. Power Deliv., 23(4): 2591−2598. [
CrossRef Google scholar
[73]
Jovcic, D., Pillai, G.N., 2005. Analytical modeling of TCSC dynamics. IEEE Trans. Power Deliv., 20: 1097−1104.
[74]
Kakimoto, N., Phongphanphanee, A., 2003. Subsynchronous resonance damping control of thyristor-controlled series capacitor. IEEE Trans. Power Deliv., 18: 1051−1059.
[75]
Kannan, S., Jayaram, S., Salama, M.M.A., 2004. Real and reactive power coordination for a unified power flow controller. IEEE Trans. Power Syst., 19(3): 1454−1461. [
CrossRef Google scholar
[76]
Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. Proc. IEEE Int. Conf. on Neural Networks, p.1942−1948.
[77]
Khaburi, M.A., Haghifam, M.R., 2010. A probabilistic modeling based approach for total transfer capability enhancement using FACTS devices. Int. J. Electr. Power Energy Syst., 32(1): 12−16. [
CrossRef Google scholar
[78]
Klir, G.J., Yuan, B., 1995. Fuzzy Sets and Fuzzy Logic: Theory and Applications. Vol. 4. Prentice Hall, New Jersey, USA.
[79]
Komoni, V., Krasniqi, I., Kabashi, G., , 2010. Increase power transfer capability and controlling line power flow in power system installed the FACTS. Proc. 7th Mediterranean Conf. and Exhibition on Power Generation, Transmission, Distribution and Energy Conversion, p.1−6. [
CrossRef Google scholar
[80]
Kumar, A., Kumar, J., 2012. Comparison of UPFC and SEN transformer for ATC enhancement in restructured electricity markets. Int. J. Electr. Power Energy Syst., 41(1): 96−104. [
CrossRef Google scholar
[81]
Kumar, A., Kumar, J., 2013. ATC determination with FACTS devices using PTDFs approach for multi-transactions in competitive electricity markets. Int. J. Electr. Power Energy Syst., 44(1): 308−317. [
CrossRef Google scholar
[82]
Lamoree, J., Mueller, D., Vinett, P., , 1994. Voltage sag analysis case studies. IEEE Trans. Ind. Appl., 30(4): 1083−1089.
[83]
Leung, H.C., Chung, T.S., 2000. Optimal power flow with a versatile FACTS controller by genetic algorithm approach. Proc. 5th Int. Conf. on Adavances in Power System Control, Operation and Management, p.178−183. [
CrossRef Google scholar
[84]
Li, N., Xu, Y., Chen, H., 2000. FACTS-based power flow control in interconnected power system. IEEE Trans. Power Syst., 15(1): 257−262. [
CrossRef Google scholar
[85]
Lin, H.X., 2001. Main problems of modern power quality. Power Syst. Technol., 25(10): 5−12 (in Chinese).
[86]
Ma, J.Z., Wu, M.L., Yang, S.B., 2009. The application of SVC for the power quality control of electric railways. Proc. Int. Conf. on Sustainable Power Generation and Supply, p.1−4. [
CrossRef Google scholar
[87]
Madhusudhanarao, G., Ramarao, P.V., Kumar, T.J., 2010. Optimal location of TCSC and SVC for enhancement of ATC in a de-regulated environment using RGA. Proc. IEEE Int. Conf. on Computational Intelligence and Computing Research, p.1−6. [
CrossRef Google scholar
[88]
Mahdavi, M., Fesanghary, M., Damangir, E., 2007. An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput., 188(2): 1567−1579. [
CrossRef Google scholar
[89]
Manikandan, B., 2010. Enhancement of Available Transfer Capability with FACTS Device in the Competitive Power Market. Available from http://www.scirp.org/Journal/PaperInformation.aspx?paperID=1834.
[90]
Manikandan, B.V., Raja, S.C., Venkatesh, P., 2011. Available transfer capability enhancement with FACTS devices in the deregulated electricity market. J. Electr. Eng. Technol., 6(1): 14−24.
[91]
Manohar, J.N., Amarnath, J., 2012. Statistical analysis of power system on enhancement of available transfer capability-applying FACTS. Int. J. Multidiscip. Sci. Eng., 3(7): 33−37.
[92]
Masuta, T., Yokoyama, A., 2006. ATC enhancement considering transient stability based on optimal power flow control by UPFC. Proc. Int. Conf. on Power System Technology, p.1−6. [
CrossRef Google scholar
[93]
Menniti, D., Scordino, N., Sorrentino, N., 2006. A new method for SSSC optimal location to improve power system available transfer capability. Proc. IEEE PES Power Systems Conf. and Exposition, p.938−945. [
CrossRef Google scholar
[94]
Moraglio, A., di Chio, C., Poli, R., 2007. Geometric particle swarm optimisation. Proc. 10th European Conf. on Genetic Programming, p.125−136. [
CrossRef Google scholar
[95]
Mori, H., Goto, Y., 2000. A parallel tabu search based method for determining optimal allocation of FACTS in power systems. Proc. Int. Conf. on Power System Technology, p.1077−1082. [
CrossRef Google scholar
[96]
Motoki, H., Yokoyama, A., 2004. Study on optimal power flow control for ATC enhancement by UPFC and its performance evaluation. Proc. Annual Conf. of Power & Energy Society.
[97]
Nagalakshmi, S., Kamaraj, N., 2012. Comparison of computational intelligence algorithms for loadability enhancement of restructured power system with FACTS devices. Swarm Evol. Comput., 5: 17−27. [
CrossRef Google scholar
[98]
Naidoo, R., Pillay, P., 2007. A new method of voltage sag and swell detection. IEEE Trans. Power Deliv., 22(2): 1056−1063. [
CrossRef Google scholar
[99]
Naidu, K., Mokhlis, H., Bakar, A.H.A., 2014. Multiobjective optimization using weighted sum artificial bee colony algorithm for load frequency control. Int. J. Electr. Power Energy Syst., 55: 657−667. [
CrossRef Google scholar
[100]
Naik, R.S., Vaisakh, K., Anand, K., 2010. Application of TCSC for enhancement of ATC with PTDF in power transmission system. Proc. Int. Conf. on Intelligent and Advanced Systems, p.1−6. [
CrossRef Google scholar
[101]
Nimje, A.A., Panigrahi, C.K., Mohanty, A.K., 2011. Enhanced power transfer capability by using SSSC. J. Mech. Eng. Res., 3(2): 48−56.
[102]
Noroozian, M., Petersson, N.A., Thorvaldson, B., , 2003. Benefits of SVC and STATCOM for electric utility application. Proc. IEEE PES Transmission and Distribution Conf. and Exposition, p.1143−1150. [
CrossRef Google scholar
[103]
Omoigui, M., Ojo, O., Karugaba, S., 2008. Analysis of multiterminal unified power flow controller for power transfer. Proc. 40th North American Power Symp., p.1−7. [
CrossRef Google scholar
[104]
Ongsakul, W., Bhasaputra, P., 2002. Optimal power flow with FACTS devices by hybrid TS/SA approach. Int. J. Electr. Power Energy Syst., 24(10): 851−857. [
CrossRef Google scholar
[105]
Ongsakul, W., Jirapong, P., 2005. Optimal allocation of FACTS devices to enhance total transfer capability using evolutionary programming. Proc. IEEE Int. Symp. on Circuits and Systems, p.4175−4178. [
CrossRef Google scholar
[106]
Ooi, B.T., Kazerani, M., Marceau, R., , 1997. Mid-point siting of FACTS devices in transmission lines. IEEE Trans. Power Deliv., 12(4): 1717−1722. [
CrossRef Google scholar
[107]
Oskoui, A., Mathew, B., Hasler, J., , 2006. Holly STATCOM-FACTS to replace critical generation, operational experience. Proc. IEEE PES Transmission and Distribution Conf. and Exhibition, p.1393−1398. [
CrossRef Google scholar
[108]
Ou, Y., Singh, C., 2002. Assessment of available transfer capability and margins. IEEE Trans. Power Syst., 17(2): 463−468. [
CrossRef Google scholar
[109]
Padiyar, K.R., 2007. FACTS Controllers in Power Transmission and Distribution. Motilal UK Books of India, India.
[110]
Panda, S., Padhy, N.P., 2008. Comparison of particle swarm optimization and genetic algorithm for FACTS-based controller design. Appl. Soft Comput., 8(4): 1418−1427. [
CrossRef Google scholar
[111]
Pandey, R.K., Chaitanya, D.V.S.B., 2012. An effective approach for ATC enhancement with FACTS device—a case study. Proc. Int. Conf. on Advances in Power Conversion and Energy Technologies, p.1−6. [
CrossRef Google scholar
[112]
Papic, I., Zunko, P., Povh, D., , 1997. Basic control of unified power flow controller. IEEE Trans. Power Syst., 12(4): 1734−1739. [
CrossRef Google scholar
[113]
Parsopoulos, K.E., Vrahatis, M.N., 2002. Particle swarm optimization method for constrained optimization problems. Intell. Technol. Theory Appl., 76: 214−220.
[114]
Partovi, F.Y., Burton, J., Banerjee, A., 1990. Application of analytical hierarchy process in operations management. Int. J. Oper. Prod. Manag., 10(3): 5−19. [
CrossRef Google scholar
[115]
Paserba, J.J., 2003. How FACTS controllers-benefit AC transmission systems. Proc. IEEE PES Transmission and Distribution Conf. and Exposition, p.949−956. [
CrossRef Google scholar
[116]
Perkins, B.K., Iravani, M.R., 1997. Dynamic modeling of a TCSC with application to SSR analysis. IEEE Trans. Power Syst., 12: 1619−1625.
[117]
Pham, D., Ghanbarzadeh, A., Koc, E., , 2006a. The bees algorithm—a novel tool for complex optimisation problems. Proc. 2nd Virtual Int. Conf. on Intelligent Production Machines and Systems, p.454−459.
[118]
Pham, D.T., Soroka, A.J., Ghanbarzadeh, A., , 2006b. Optimising neural networks for identification of wood defects using the bees algorithm. Proc. IEEE Int. Conf. on Industrial Informatics, p.1346−1351. [
CrossRef Google scholar
[119]
Pilotto, L.A.S., Bianco, A., Long, W.F., , 2003. Impact of TCSC control methodologies on subsynchronous oscillations. IEEE Trans. Power Deliv., 18: 243−252.
[120]
Price, K., Storn, R.M., Lampinen, J.A., 2005. Differential Evolution: a Practical Approach to Global Optimization. Springer, Germany. [
CrossRef Google scholar
[121]
Qin, A.K., Huang, V.L., Suganthan, P.N., 2009. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput., 13(2): 398−417. [
CrossRef Google scholar
[122]
Ramesh, M., Laxmi, A.J., 2012. Stabilty of power transmission capability of HVDC system using FACTS controllers. Proc. Int. Conf. on Computer Communication and Informatics, p.1−7. [
CrossRef Google scholar
[123]
Ramey, D.G., Henderson, M., 2007. Overview of a special publication on transmission system application requirements for FACTS controllers. Proc. Power Engineering Society General Meeting, p.1−5.
[124]
Rao, K.S., Kumar, B.K., 2011. Placement of SVC for minimizing losses and maximizing total transfer capability using particle swarm optimization. Proc. IET Conf. on Renewable Power Generation, p.1−5. [
CrossRef Google scholar
[125]
Rashed, G.I., Sun, Y., Shaheen, H.I., 2012. Optimal location and parameter setting of TCSC for loss minimization based on differential evolution and genetic algorithm. Phys. Proced., 33: 1864−1878. [
CrossRef Google scholar
[126]
Rashidinejad, M., Farahmand, H., Fotuhi-Firuzabad, M., , 2008. ATC enhancement using TCSC via artificial intelligent techniques. Electr. Power Syst. Res., 78(1): 11−20. [
CrossRef Google scholar
[127]
Ren, H., Watts, D., Mi, Z., , 2009. A review of FACTS’ practical consideration and economic evaluation. Proc. Asia-Pacific Power and Energy Engineering Conf., p.1−5. [
CrossRef Google scholar
[128]
Renz, B.A., Keri, A., Mehraban, A.S., , 1999. AEP unified power flow controller performance. IEEE Trans. Power Deliv., 14(4): 1374−1381. [
CrossRef Google scholar
[129]
Rewatkar, S.B., Kewte, S.G., 2009. Role of power electronics based FACTS controller SVC for mitigation of power quality problems. Proc. 2nd Int. Conf. on Emerging Trends in Engineering and Technology, p.731−735. [
CrossRef Google scholar
[130]
Saaty, T.L., 1977. A scaling method for priorities in hierarchical structures. J. Math. Psychol., 15(3): 234−281. [
CrossRef Google scholar
[131]
Sahadat, M.N., Al Masood, N., Hossain, M.S., , 2011. Real power transfer capability enhancement of transmission lines using SVC. Proc. Asia-Pacific Power and Energy Engineering Conf., p.1−4. [
CrossRef Google scholar
[132]
Saltelli, A., Chan, K., Scott, E.M., 2000. Sensitivity Analysis. Wiley, New York, USA.
[133]
Sannino, A., Svensson, J., Larsson, T., 2003. Powerelectronic solutions to power quality problems. Electr. Power Syst. Res., 66(1): 71−82. [
CrossRef Google scholar
[134]
Sawhney, H., Jeyasurya, B., 2004. Application of unified power flow controller for available transfer capability enhancement. Electr. Power Syst. Res., 69(2−3): 155−160. [
CrossRef Google scholar
[135]
Schauder, C., Mehta, H., 1993. Vector analysis and control of advanced static VAR compensators. IEE Proc. C, 140(4): 299−306. [
CrossRef Google scholar
[136]
Sen, K.K., 1998. SSSC-static synchronous series compensator: theory, modeling, and application. IEEE Trans. Power Deliv., 13(1): 241−246. [
CrossRef Google scholar
[137]
Sen, K.K., Stacey, E.J., 1998. UPFC-unified power flow controller: theory, modeling, and applications. IEEE Trans. Power Deliv., 13(4): 1453−1460. [
CrossRef Google scholar
[138]
Shakarami, M.R., Kazemi, A., 2010. Robust design of static synchronous series compensator-based stabilizer for damping inter-area oscillations using quadratic mathematical programming. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 11(4): 296−306. [
CrossRef Google scholar
[139]
Shirmohammadi, D., Hong, H.W., Semlyen, A., , 1988. A compensation-based power flow method for weakly meshed distribution and transmission networks. IEEE Trans. Power Syst., 3(2): 753−762.
[140]
Siemens, 2012. Discover the World of FACTS Technology.
[141]
Singh, B., Saha, R., 2008. Enhancing power transfer capacity of transmission system by a reduced magnetics based 48-pulse STATCOM controller. Proc. Joint Int. Conf. on Power System Technology and IEEE Power India Conf., p.1−8. [
CrossRef Google scholar
[142]
Sood, V.K., 2004. HVDC and FACTS Controllers: Applications of Static Converters in Power Systems. Springer.
[143]
Sookananta, B., Galloway, S.J., Burt, G.M., , 2007. Employment of power transfer distribution factor for the optimal placement of FACTS devices. Proc. Int. Power Engineering Conf., p.569−573.
[144]
Spee, R., Zhu, W., 1992. Flexible AC transmission systems simulation and control. Proc. 3rd AFRICON Conf., p.65−68. [
CrossRef Google scholar
[145]
Srinu Naik, R., Vaisakh, K., Anand, K., 2010. Determination of ATC with PTDF using linear methods in presence of TCSC. Proc. 2nd Int. Conf. on Computer and Automation Engineering, p.146−151. [
CrossRef Google scholar
[146]
Subcommittee, P.M., 1979. IEEE reliability test system. IEEE Trans. Power App. Syst., 6: 2047−2054.
[147]
Sun, J., Czarkowski, D., Zabar, Z., 2002. Voltage flicker mitigation using PWM-based distribution STATCOM. Proc. IEEE Power Engineering Society Summer Meeting, p.616−621. [
CrossRef Google scholar
[148]
Takasaki, M., 2006. Power transfer capability enhancement with UPFC under circumstances of uncertain power flow pattern. Proc. IEEE PES Transmission and Distribution Conf. and Exhibition, p.659−665. [
CrossRef Google scholar
[149]
Tang, B.F., Fan, H., Wang, X.W., , 2010. The dynamic simulation research on application of SVC in the south Hebei power grid. Proc. China Int. Conf. on Electricity Distribution, p.1−4.
[150]
Trzynadlowski, A.M., Blaabjerg, F., Pedersen, J.K., , 1994. Random pulse width modulation techniques for converter-fed drive systems—a review. IEEE Trans. Ind. Appl., 30(5): 1166−1175. [
CrossRef Google scholar
[151]
Tsoulos, I.G., 2008. Modifications of real code genetic algorithm for global optimization. Appl. Math. Comput., 203(2): 598−607. [
CrossRef Google scholar
[152]
van Laarhoven, P.J., Aarts, E.H., 1987. Simulated Annealing. Springer.
[153]
Vara Prasad, J., Sai Ram, I., Jayababu, B., 2011. Genetically optimized FACTS controllers for available transfer capability enhancement. Int. J. Comput. Appl., 19(4): 23−27.
[154]
Vasquez-Arnez, R.L., Zanetta, L.C., 2008. A novel approach for modeling the steady-state VSC-based multiline FACTS controllers and their operational constraints. IEEE Trans. Power Deliv., 23(1): 457−464. [
CrossRef Google scholar
[155]
Venkatesh, B., George, M.K., Gooi, H.B., 2004. Fuzzy OPF incorporating UPFC. IEE Proc. C, 151(5): 625−629. [
CrossRef Google scholar
[156]
Venter, G., Sobieszczanski-Sobieski, J., 2003. Particle swarm optimization. AIAA J., 41(8): 1583−1589.
[157]
Visakha, K., Thukaram, D., Jenkins, L., 2004. Application of UPFC for system security improvement under normal and network contingencies. Electr. Power Syst. Res., 70(1): 46−55. [
CrossRef Google scholar
[158]
Wang, H.F., Swift, F.J., Li, M., 1997. Analysis of thyristorcontrolled phase shifter applied in damping power system oscillations. Int. J. Electr. Power Energy Syst., 19(1): 1−9. [
CrossRef Google scholar
[159]
Watts, D., Ren, H., 2007. FACTS: characteristics, applications and economic value: a literature review. Proc. 7th IASTED Int. Conf. on Power and Energy Systems, p.450−455.
[160]
Xiong, W.Q., Zhang, Y.P., Wei, P., 2004. An improved realcode genetic algorithm. Proc. Int. Conf. on Machine Learning and Cybernetics, p.2361−2364.
[161]
Yang, H.T., Yang, P.C., Huang, C.L., 1996. Evolutionary programming based economic dispatch for units with non-smooth fuel cost functions. IEEE Trans. Power Syst., 11(1): 112−118. [
CrossRef Google scholar
[162]
Yousefi-Talouki, A., Gholamian, S.A., Hosseini, M., , 2010. Optimal power flow with unified power flow controller using artificial bee colony algorithm. Int. Rev. Electr. Eng., 5(6): 2773−2782.
[163]
Yuryevich, J., Wong, K.P., 1999. Evolutionary programming based optimal power flow algorithm. IEEE Trans. Power Syst., 14(4): 1245−1250. [
CrossRef Google scholar
[164]
Zhang, X.P., Handschin, E.J., 2001. Advanced implementation of UPFC in a nonlinear interior-point OPF. IEE Proc. C, 148(5): 489−496. [
CrossRef Google scholar
[165]
Zhang, X.P., Handschin, E., Yao, M., 2004. Multi-control functional static synchronous compensator (STATCOM) in power system steady-state operations. Electr. Power Syst. Res., 72(3): 269−278. [
CrossRef Google scholar
[166]
Zhang, X.P., Rehtanz, C., Pal, B., 2012. Flexible AC Transmission Systems: Modelling and Control. Springer.
[167]
Zhang, Y.K., Zhang, Y., 2006. A novel power injection model of embedded SSSC with multi-control modes for power flow analysis inclusive of practical constraints. Electr. Power Syst. Res., 76(5): 374−381. [
CrossRef Google scholar
[168]
Zheng, J.G., Wang, X., 2011. Diversity composite differential evolution algorithm for constrained optimization problems. Comput. Integ. Manuf. Syst., 17(11): 2447−2456.
[169]
Zheng, Z., Yang, G., Geng, H., 2013. Coordinated control of a doubly-fed induction generator-based wind farm and a static synchronous compensator for low voltage ridethrough grid code compliance during asymmetrical grid faults. Energies, 6(9): 4660−4681. [
CrossRef Google scholar
[170]
Zhong, W.L., Wang, H.S., Zhang, J., , 2008. Novel particle swarm optimization with heuristic mutation. Comput. Eng. Des., 29(13): 3402−3406 (in Chinese).

RIGHTS & PERMISSIONS

2015 Zhejiang University and Springer-Verlag Berlin Heidelberg
PDF(641 KB)

Accesses

Citations

Detail

Sections
Recommended

/