Multi-stage dual replica bit-line delay technique for process-variation-robust timing of lowvoltageSRAMsense amplifier
Shou-biao TAN, Wen-juan LU, Chun-yu PENG, Zheng-ping LI, You-wu TAO, Jun-ning CHEN
Multi-stage dual replica bit-line delay technique for process-variation-robust timing of lowvoltageSRAMsense amplifier
A multi-stage dual replica bit-line delay (MDRBD) technique is proposed for reducing access time by suppressing the sense-amplifier enable (SAE) timing variation of low voltage static random-access memory (SRAM) applications. Compared with the traditional technique, this strategy, using statistical theory, reduces the timing variation by using multi-stage ideas, meanwhile doubling the replica bit-line (RBL) capacitance and discharge path simultaneously in each stage. At a supply voltage of 0.6 V, the simulation results show that the standard deviations of the SAE timing and cycle time with the proposed technique are 69.2% and 47.2%, respectively, smaller than that with a conventional RBL delay technique in TSMC 65 nm CMOS technology (Taiwan Semiconductor Manufacturing Company, Taiwan).
Process-variation-robust / Sense amplifier (SA) / Replica bit-line (RBL) delay / Timing variation
[1] |
Amrutur, B.S., Horowitz, M.A., 1998. A replica technique for wordline and sense control in low-power SRAM’s. IEEE J. Sol.-State Circ., 33(8): 1208―1219. [
CrossRef
Google scholar
|
[2] |
Arandilla, C.D.C., Madamba, J.A.R., 2011. Comparison of replica bitline technique and chain delay technique as read timing control for low-power asynchronous SRAM. Proc. 5th Asia Modelling Symp., p.275―278. [
CrossRef
Google scholar
|
[3] |
Arslan, U., McCartney, M.P., Bhargava, M.,
CrossRef
Google scholar
|
[4] |
Chang, I.J., Mohapatra, D., Roy, K., 2011. A priority-based 6T/8T hybrid SRAM architecture for aggressive voltage scaling in video applications. IEEE Trans. Circ. Syst. Video Technol., 21(2): 101―112. [
CrossRef
Google scholar
|
[5] |
Gammie, G., Ickes, N., Sinangil, M.E.,
CrossRef
Google scholar
|
[6] |
Johnson, J.B., Hook, T.B., Lee, Y.M., 2008. Analysis and<?Pub Caret?> modeling of threshold voltage mismatch for CMOS at 65 nm and beyond. IEEE Electr. Dev. Lett., 29(7): 802―804. [
CrossRef
Google scholar
|
[7] |
Kawasumi, A., Takeyama, Y., Hirabayashi, O.,
CrossRef
Google scholar
|
[8] |
Keyes, R.W., 1975. Effect of randomness in the distribution of impurity ions on FET thresholds in integrated electronics. IEEE J. Sol.-State Circ., 10(4): 245―247. [
CrossRef
Google scholar
|
[9] |
Komatsu, S., Yamaoka, M., Morimoto, M.,
CrossRef
Google scholar
|
[10] |
Li, Y., Wen, L., Zhang, Y.,
CrossRef
Google scholar
|
[11] |
Lovett, S.J., Gibbs, G.A., Pancholy, A., 2000. Yield and matching implications for static RAM memory array sense-amplifier design. IEEE J. Sol.-State Circ., 35(8): 1200―1204. [
CrossRef
Google scholar
|
[12] |
Niki, Y., Kawasumi, A., Suzuki, A.,
CrossRef
Google scholar
|
[13] |
Niki, Y., Kawasumi, A., Suzuki, A.,
CrossRef
Google scholar
|
[14] |
Osada, K., Shin, J., Khan, M.,
CrossRef
Google scholar
|
[15] |
Pelgrom, M.J.M., Duinmaijer, A.C.J., Welbers, A.P.G., 1989. Matching properties of MOS transistors. IEEE J. Sol.-State Circ., 24(5): 1433―1439. [
CrossRef
Google scholar
|
[16] |
Song, T., Lee, S.M., Choi, J.,
CrossRef
Google scholar
|
[17] |
Wu, J., Zhu, J., Xia, Y.,
CrossRef
Google scholar
|
/
〈 | 〉 |