New computational treatment of optical wave propagation in lossywaveguides
Jian-xin ZHU, Guan-jie WANG
New computational treatment of optical wave propagation in lossywaveguides
In this paper, the optical wave propagation in lossy waveguides is described by the Helmholtz equation with the complex refractive-index, and the Chebyshev pseudospectral method is used to discretize the transverse operator of the equation. Meanwhile, an operator marching method, a one-way re-formulation based on the Dirichletto-Neumann (DtN) map, is improved to solve the equation. Numerical examples show that our treatment is more efficient.
Adjoint operator / Orthogonal / Chebyshev / Pseudospectral method / Dirichlet-to-Neumann map
[1] |
Andrew, A.L., 2000. Twenty years of asymptotic correction for eigenvalue computation. ANZIAM J., 42: 96―116.
|
[2] |
Boyd, J.P., 2001. Chebyshev and Fourier Spectral Methods (2nd Ed.). Dover Publications, Inc., USA.
|
[3] |
Canuto, C., Hussaini, M.Y., Quarteroni, A.,
|
[4] |
Costa, B., Don, W.S., Simas, A., 2007. Spatial resolution properties of mapped spectral Chebyshev methods. Proc. SCPDE: Recent Progress in Scientific Computing, p.179―188.
|
[5] |
Lu, Y.Y., 1999. One-way large range step methods for Helmholtz waveguides. J. Comput. Phys., 152(1): 231―250. [
CrossRef
Google scholar
|
[6] |
Lu, Y.Y., McLaughlin, J.R., 1996. The Riccati method for the Helmholtz equation. J. Acoust. Soc. Am., 100(3): 1432―1446. [
CrossRef
Google scholar
|
[7] |
Lu, Y.Y., Zhu, J.X., 2004. A local orthogonal transform for acoustic waveguides with an internal interface. J. Comput. Acoust., 121: 37―53. [
CrossRef
Google scholar
|
[8] |
März, R., 1995. Integrated Optics: Design and Modeling. Artech House, USA.
|
[9] |
Silva, A., Monticone, F., Castaldi, G.,
CrossRef
Google scholar
|
[10] |
Trefethen, L.N., 2000. Spectral Methods in MATLAB. Society for Industrial and Applied Mathematics, USA.
|
[11] |
Trefethen, L.N., 2013. Approximation Theory and Approximation Practice. Society for Industrial and Applied Mathematics, USA.
|
[12] |
Vassallo, C., 1991. Optical Waveguide Concepts. Elsevier, Amsterdam.
|
[13] |
Waldvogel, J., 2006. Fast construction of the Fejér and Clenshaw-Curtis quadrature rules. BIT Numer. Math., 46(1): 195―202. [
CrossRef
Google scholar
|
[14] |
Zhang, X., 2010. Mapped barycentric Chebyshev differentiation matrix method for the solution of regular Sturm-Liouville problems. Appl. Math. Comput., 217(5): 2266―2276. [
CrossRef
Google scholar
|
[15] |
Zhu, J., Lu, Y.Y., 2004. Validity of one-way models in the weak range dependence limit. J. Comput. Acoust., 12(1): 55―66. [
CrossRef
Google scholar
|
[16] |
Zhu, J., Song, R., 2009. Fast and stable computation of optical propagation in micro-waveguides with loss. Microelectron. Reliab., 49(12): 1529―1536. [
CrossRef
Google scholar
|
/
〈 | 〉 |