New computational treatment of optical wave propagation in lossywaveguides

Jian-xin ZHU, Guan-jie WANG

PDF(384 KB)
PDF(384 KB)
Front. Inform. Technol. Electron. Eng ›› 2015, Vol. 16 ›› Issue (8) : 646-653. DOI: 10.1631/FITEE.1400406

New computational treatment of optical wave propagation in lossywaveguides

Author information +
History +

Abstract

In this paper, the optical wave propagation in lossy waveguides is described by the Helmholtz equation with the complex refractive-index, and the Chebyshev pseudospectral method is used to discretize the transverse operator of the equation. Meanwhile, an operator marching method, a one-way re-formulation based on the Dirichletto-Neumann (DtN) map, is improved to solve the equation. Numerical examples show that our treatment is more efficient.

Keywords

Adjoint operator / Orthogonal / Chebyshev / Pseudospectral method / Dirichlet-to-Neumann map

Cite this article

Download citation ▾
Jian-xin ZHU, Guan-jie WANG. New computational treatment of optical wave propagation in lossywaveguides. Front. Inform. Technol. Electron. Eng, 2015, 16(8): 646‒653 https://doi.org/10.1631/FITEE.1400406

References

[1]
Andrew, A.L., 2000. Twenty years of asymptotic correction for eigenvalue computation. ANZIAM J., 42: 96―116.
[2]
Boyd, J.P., 2001. Chebyshev and Fourier Spectral Methods (2nd Ed.). Dover Publications, Inc., USA.
[3]
Canuto, C., Hussaini, M.Y., Quarteroni, A., , 1988. Spectral Methods in Fluid Dynamics. Springer-Verlag Berlin Heidelberg, USA.
[4]
Costa, B., Don, W.S., Simas, A., 2007. Spatial resolution properties of mapped spectral Chebyshev methods. Proc. SCPDE: Recent Progress in Scientific Computing, p.179―188.
[5]
Lu, Y.Y., 1999. One-way large range step methods for Helmholtz waveguides. J. Comput. Phys., 152(1): 231―250. [
CrossRef Google scholar
[6]
Lu, Y.Y., McLaughlin, J.R., 1996. The Riccati method for the Helmholtz equation. J. Acoust. Soc. Am., 100(3): 1432―1446. [
CrossRef Google scholar
[7]
Lu, Y.Y., Zhu, J.X., 2004. A local orthogonal transform for acoustic waveguides with an internal interface. J. Comput. Acoust., 121: 37―53. [
CrossRef Google scholar
[8]
März, R., 1995. Integrated Optics: Design and Modeling. Artech House, USA.
[9]
Silva, A., Monticone, F., Castaldi, G., , 2014. Performing mathematical operations with metamaterials. Science, 343(6167): 160―163. [
CrossRef Google scholar
[10]
Trefethen, L.N., 2000. Spectral Methods in MATLAB. Society for Industrial and Applied Mathematics, USA.
[11]
Trefethen, L.N., 2013. Approximation Theory and Approximation Practice. Society for Industrial and Applied Mathematics, USA.
[12]
Vassallo, C., 1991. Optical Waveguide Concepts. Elsevier, Amsterdam.
[13]
Waldvogel, J., 2006. Fast construction of the Fejér and Clenshaw-Curtis quadrature rules. BIT Numer. Math., 46(1): 195―202. [
CrossRef Google scholar
[14]
Zhang, X., 2010. Mapped barycentric Chebyshev differentiation matrix method for the solution of regular Sturm-Liouville problems. Appl. Math. Comput., 217(5): 2266―2276. [
CrossRef Google scholar
[15]
Zhu, J., Lu, Y.Y., 2004. Validity of one-way models in the weak range dependence limit. J. Comput. Acoust., 12(1): 55―66. [
CrossRef Google scholar
[16]
Zhu, J., Song, R., 2009. Fast and stable computation of optical propagation in micro-waveguides with loss. Microelectron. Reliab., 49(12): 1529―1536. [
CrossRef Google scholar
PDF(384 KB)

Accesses

Citations

Detail

Sections
Recommended

/