A combined modulated feedback and temperature compensation approach to improve bias drift of a closed-loop MEMS capacitive accelerometer

Ming-jun MA, Zhong-he JIN, Hui-jie ZHU

PDF(1370 KB)
PDF(1370 KB)
Front. Inform. Technol. Electron. Eng ›› 2015, Vol. 16 ›› Issue (6) : 497-510. DOI: 10.1631/FITEE.1400349

A combined modulated feedback and temperature compensation approach to improve bias drift of a closed-loop MEMS capacitive accelerometer

Author information +
History +

Abstract

The bias drift of a micro-electro-mechanical systems (MEMS) accelerometer suffers from the 1/f noise and the temperature effect. For massive applications, the bias drift urgently needs to be improved. Conventional methods often cannot address the 1/f noise and temperature effect in one architecture. In this paper, a combined approach on closed-loop architecture modification is proposed to minimize the bias drift. The modulated feedback approach is used to isolate the 1/f noise that exists in the conventional direct feedback approach. Then a common mode signal is created and added into the closed loop on the basis of modulated feedback architecture, to compensate for the temperature drift. With the combined approach, the bias instability is improved to less than 13 μg, and the drift of the Allan variance result is reduced to 17 μg at 100 s of the integration time. The temperature coefficient is reduced from 4.68 to 0.1 mg/°C. The combined approach could be useful for many other closed-loop accelerometers.

Keywords

Bias drift / Closed-loop MEMS accelerometer / Modulated feedback approach / Temperature compensation

Cite this article

Download citation ▾
Ming-jun MA, Zhong-he JIN, Hui-jie ZHU. A combined modulated feedback and temperature compensation approach to improve bias drift of a closed-loop MEMS capacitive accelerometer. Front. Inform. Technol. Electron. Eng, 2015, 16(6): 497‒510 https://doi.org/10.1631/FITEE.1400349

References

[1]
Aaltonen, L., Halonen, K., 2009. Continuous-time interface for a micromachined capacitive accelerometer with NEA of 4 μg and bandwidth of 300 Hz. Sens. Actuat. A, 154(1): 46-56. [
CrossRef Google scholar
[2]
Allan, D.W., 1966. Statistics of atomic frequency standards. Proc. IEEE, 54(2): 221-230. [
CrossRef Google scholar
[3]
Amini, B.V., Abdolvand, R., Ayazi, F., 2006. A 4.5-mW closed-loop ΔΣ micro-gravity CMOS SOI accelerometer. IEEE J. Sol.-State Circ., 41(12): 2983-2991. [
CrossRef Google scholar
[4]
Chae, J., Kulah, H., Najafi, K., 2005. A CMOS-compatible high aspect ratio silicon-on-glass in-plane microaccelerometer. J. Micromech. Microeng., 15(2): 336-345. [
CrossRef Google scholar
[5]
Cui, J., Guo, Z.Y., Yang, Z.C., , 2011. Electrical coupling suppression and transient response improvement for a microgyroscope using ascending frequency drive with a 2-DOF PID controller. J. Micromech. Microeng., 21(9): 1-11. [
CrossRef Google scholar
[6]
Dong, Y., Kraft, M., Redman-White, W., 2007. Higher order noise-shaping filters for high-performance micromachined accelerometers. IEEE Trans. Instrum. Meas., 56(5): 1666-1674. [
CrossRef Google scholar
[7]
Dong, Y., Zwahlen, P., Nguyen, A.M., , 2010. High performance inertial navigation grade sigma-delta MEMS accelerometer. Proc. IEEE/ION Position Location and Navigation Symp., p.32-36. [
CrossRef Google scholar
[8]
Enz, C.C., Temes, G.C., 1996. Circuit techniques for reducing the effects of OP-AMP imperfections: autozeroing, correlated double sampling, and chopper stabilization. Proc. IEEE, 84(11): 1584-1614. [
CrossRef Google scholar
[9]
IEEE, 1998. IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros. IEEE Std 952-1997. [
CrossRef Google scholar
[10]
Josselin, V., Touboul, P., Kielbasa, R., 1999. Capacitive detection scheme for space accelerometer applications. Sens. Actuat. A, 78(2-3): 92-98. [
CrossRef Google scholar
[11]
Kajita, T., Moon, U.K., Temes, G.C., 2002. A two-chip interface for a MEMS accelerometer. IEEE Trans. Instrum. Meas., 51(4): 853-858. [
CrossRef Google scholar
[12]
Karabalin, R.B., Villanueva, L.G., Matheny, M.H., , 2012. Stress-induced variation in the stiffness of microand nanocantilever beams. Phys. Rev. Lett., 108: 236101. [
CrossRef Google scholar
[13]
Ko, H., Cho, D.D., 2010. Highly programmable temperature compensated readout circuit for capacitive microaccelerometer. Sens. Actuat. A, 158(1): 72-83. [
CrossRef Google scholar
[14]
Lakdawala, H., Fedder, G.K., 2004. Temperature stabilization of CMOS capacitive accelerometers. J. Micromech. Microeng., 14(4): 559-566. [
CrossRef Google scholar
[15]
Lee, J., Rhim, J., 2012. Temperature compensation method for the resonant frequency of a differential vibrating accelerometer using electrostatic stiffness control. J.Micromech. Microeng., 22(9): 1-11. [
CrossRef Google scholar
[16]
Lee, K., Takao, H., Sawada, K., , 2003. A three-axis accelerometer for high temperatures with low temperature dependence using a constant temperature control of SOI piezoresistors. Proc. 16th IEEE Annual Int. Conf. on Micro Electro Mechanical Systems, p.478-481. [
CrossRef Google scholar
[17]
Li, M., Horsley, D.A., 2014. Offset suppression in a micromachined Lorentz force magnetic sensor by current chopping. J. Microelectromech. Syst., 23(6): 1477-1484. [
CrossRef Google scholar
[18]
Liu, D., Chi, X., Cui, J., , 2008. Research on temperature dependent characteristics and compensation methods for digital gyroscope. Proc. 3rd Int. Conf. on Sensing Technology, p.273-277. [
CrossRef Google scholar
[19]
Petkov, V.P., Boser, B.E., 2004. Capacitive interfaces for MEMS. In: Baltes, H., Brand, O., Fedder, G.K., (Eds.), Enabling Technology for MEMS and Nanodevices. Wiley-VCH Weinheim, p.49-92. [
CrossRef Google scholar
[20]
Prikhodko, I.P., Trusov, A.A., Shkel, A.M., 2013. Compensation of drifts in high-Q MEMS gyroscopes using temperature self-sensing. Sens. Actuat. A, 201: 517-524. [
CrossRef Google scholar
[21]
Samarao, A.K., Ayazi, F., 2012. Temperature compensation of silicon resonators via degenerate doping. IEEE Trans. Electron Dev., 59(1): 87-93. [
CrossRef Google scholar
[22]
Schreier, R., 1993. An empirical study of high-order singlebit delta-sigma modulators. IEEE Trans. Circ. Syst. II, 40(8): 461-466. [
CrossRef Google scholar
[23]
Willemenot, E., Touboul, P., 2000. On-ground investigation of space accelerometer noise with an electrostatic torsion pendulum. Rev. Sci. Instrum., 71(1): 302-309. [
CrossRef Google scholar
[24]
Wongkomet, N., Boser, B.E., 1998. Correlated double sampling in capacitive position sensing circuits for micromachined applications. Proc. IEEE Asia-Pacific Conf. on Circuits and Systems, p.723-726. [
CrossRef Google scholar
[25]
Wortman, J.J., Evans, R.A., 1965. Young’s modulus, shear modulus, and Poisson’s ratio in silicon and germanium. J. Appl. Phys., 36(1): 153-156. [
CrossRef Google scholar
[26]
Wu, J., Fedder, G.K., Carley, L.R., 2004. A low-noise lowoffset capacitive sensing amplifier for a 50-μg/√Hz monolithic CMOS MEMS accelerometer. IEEE J. Sol.-State Circ., 39(5): 722-730. [
CrossRef Google scholar
[27]
Yoshida, Y., Kakuma, H., Asanuma, H., , 2005. A linear model based noise evaluation of a capacitive servoaccelerometer fabricated by MEMS. IEICE Electron. Expr., 2(6): 198-204. [
CrossRef Google scholar
[28]
Zheng, X., Jin, Z., Wang, Y., , 2009. An in-plane lownoise accelerometer fabricated with an improved process flow. J. Zhejiang Univ.-Sci. A, 10(10): 1413-1420. [
CrossRef Google scholar
PDF(1370 KB)

Accesses

Citations

Detail

Sections
Recommended

/