A combined modulated feedback and temperature compensation approach to improve bias drift of a closed-loop MEMS capacitive accelerometer
Ming-jun MA, Zhong-he JIN, Hui-jie ZHU
A combined modulated feedback and temperature compensation approach to improve bias drift of a closed-loop MEMS capacitive accelerometer
The bias drift of a micro-electro-mechanical systems (MEMS) accelerometer suffers from the 1/f noise and the temperature effect. For massive applications, the bias drift urgently needs to be improved. Conventional methods often cannot address the 1/f noise and temperature effect in one architecture. In this paper, a combined approach on closed-loop architecture modification is proposed to minimize the bias drift. The modulated feedback approach is used to isolate the 1/f noise that exists in the conventional direct feedback approach. Then a common mode signal is created and added into the closed loop on the basis of modulated feedback architecture, to compensate for the temperature drift. With the combined approach, the bias instability is improved to less than 13 μg, and the drift of the Allan variance result is reduced to 17 μg at 100 s of the integration time. The temperature coefficient is reduced from 4.68 to 0.1 mg/°C. The combined approach could be useful for many other closed-loop accelerometers.
Bias drift / Closed-loop MEMS accelerometer / Modulated feedback approach / Temperature compensation
[1] |
Aaltonen, L., Halonen, K., 2009. Continuous-time interface for a micromachined capacitive accelerometer with NEA of 4 μg and bandwidth of 300 Hz. Sens. Actuat. A, 154(1): 46-56. [
CrossRef
Google scholar
|
[2] |
Allan, D.W., 1966. Statistics of atomic frequency standards. Proc. IEEE, 54(2): 221-230. [
CrossRef
Google scholar
|
[3] |
Amini, B.V., Abdolvand, R., Ayazi, F., 2006. A 4.5-mW closed-loop ΔΣ micro-gravity CMOS SOI accelerometer. IEEE J. Sol.-State Circ., 41(12): 2983-2991. [
CrossRef
Google scholar
|
[4] |
Chae, J., Kulah, H., Najafi, K., 2005. A CMOS-compatible high aspect ratio silicon-on-glass in-plane microaccelerometer. J. Micromech. Microeng., 15(2): 336-345. [
CrossRef
Google scholar
|
[5] |
Cui, J., Guo, Z.Y., Yang, Z.C.,
CrossRef
Google scholar
|
[6] |
Dong, Y., Kraft, M., Redman-White, W., 2007. Higher order noise-shaping filters for high-performance micromachined accelerometers. IEEE Trans. Instrum. Meas., 56(5): 1666-1674. [
CrossRef
Google scholar
|
[7] |
Dong, Y., Zwahlen, P., Nguyen, A.M.,
CrossRef
Google scholar
|
[8] |
Enz, C.C., Temes, G.C., 1996. Circuit techniques for reducing the effects of OP-AMP imperfections: autozeroing, correlated double sampling, and chopper stabilization. Proc. IEEE, 84(11): 1584-1614. [
CrossRef
Google scholar
|
[9] |
IEEE, 1998. IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros. IEEE Std 952-1997. [
CrossRef
Google scholar
|
[10] |
Josselin, V., Touboul, P., Kielbasa, R., 1999. Capacitive detection scheme for space accelerometer applications. Sens. Actuat. A, 78(2-3): 92-98. [
CrossRef
Google scholar
|
[11] |
Kajita, T., Moon, U.K., Temes, G.C., 2002. A two-chip interface for a MEMS accelerometer. IEEE Trans. Instrum. Meas., 51(4): 853-858. [
CrossRef
Google scholar
|
[12] |
Karabalin, R.B., Villanueva, L.G., Matheny, M.H.,
CrossRef
Google scholar
|
[13] |
Ko, H., Cho, D.D., 2010. Highly programmable temperature compensated readout circuit for capacitive microaccelerometer. Sens. Actuat. A, 158(1): 72-83. [
CrossRef
Google scholar
|
[14] |
Lakdawala, H., Fedder, G.K., 2004. Temperature stabilization of CMOS capacitive accelerometers. J. Micromech. Microeng., 14(4): 559-566. [
CrossRef
Google scholar
|
[15] |
Lee, J., Rhim, J., 2012. Temperature compensation method for the resonant frequency of a differential vibrating accelerometer using electrostatic stiffness control. J.Micromech. Microeng., 22(9): 1-11. [
CrossRef
Google scholar
|
[16] |
Lee, K., Takao, H., Sawada, K.,
CrossRef
Google scholar
|
[17] |
Li, M., Horsley, D.A., 2014. Offset suppression in a micromachined Lorentz force magnetic sensor by current chopping. J. Microelectromech. Syst., 23(6): 1477-1484. [
CrossRef
Google scholar
|
[18] |
Liu, D., Chi, X., Cui, J.,
CrossRef
Google scholar
|
[19] |
Petkov, V.P., Boser, B.E., 2004. Capacitive interfaces for MEMS. In: Baltes, H., Brand, O., Fedder, G.K.,
CrossRef
Google scholar
|
[20] |
Prikhodko, I.P., Trusov, A.A., Shkel, A.M., 2013. Compensation of drifts in high-Q MEMS gyroscopes using temperature self-sensing. Sens. Actuat. A, 201: 517-524. [
CrossRef
Google scholar
|
[21] |
Samarao, A.K., Ayazi, F., 2012. Temperature compensation of silicon resonators via degenerate doping. IEEE Trans. Electron Dev., 59(1): 87-93. [
CrossRef
Google scholar
|
[22] |
Schreier, R., 1993. An empirical study of high-order singlebit delta-sigma modulators. IEEE Trans. Circ. Syst. II, 40(8): 461-466. [
CrossRef
Google scholar
|
[23] |
Willemenot, E., Touboul, P., 2000. On-ground investigation of space accelerometer noise with an electrostatic torsion pendulum. Rev. Sci. Instrum., 71(1): 302-309. [
CrossRef
Google scholar
|
[24] |
Wongkomet, N., Boser, B.E., 1998. Correlated double sampling in capacitive position sensing circuits for micromachined applications. Proc. IEEE Asia-Pacific Conf. on Circuits and Systems, p.723-726. [
CrossRef
Google scholar
|
[25] |
Wortman, J.J., Evans, R.A., 1965. Young’s modulus, shear modulus, and Poisson’s ratio in silicon and germanium. J. Appl. Phys., 36(1): 153-156. [
CrossRef
Google scholar
|
[26] |
Wu, J., Fedder, G.K., Carley, L.R., 2004. A low-noise lowoffset capacitive sensing amplifier for a 50-μg/√Hz monolithic CMOS MEMS accelerometer. IEEE J. Sol.-State Circ., 39(5): 722-730. [
CrossRef
Google scholar
|
[27] |
Yoshida, Y., Kakuma, H., Asanuma, H.,
CrossRef
Google scholar
|
[28] |
Zheng, X., Jin, Z., Wang, Y.,
CrossRef
Google scholar
|
/
〈 | 〉 |