A novel multimode process monitoring method integrating LDRSKM with Bayesian inference

Shi-jin REN, Yin LIANG, Xiang-jun ZHAO, Mao-yun YANG

PDF(754 KB)
PDF(754 KB)
Front. Inform. Technol. Electron. Eng ›› 2015, Vol. 16 ›› Issue (8) : 617-633. DOI: 10.1631/FITEE.1400263

A novel multimode process monitoring method integrating LDRSKM with Bayesian inference

Author information +
History +

Abstract

A local discriminant regularized soft k-means (LDRSKM) method with Bayesian inference is proposed for multimode process monitoring. LDRSKM extends the regularized soft k-means algorithm by exploiting the local and non-local geometric information of the data and generalized linear discriminant analysis to provide a better and more meaningful data partition. LDRSKM can perform clustering and subspace selection simultaneously, enhancing the separability of data residing in different clusters. With the data partition obtained, kernel support vector data description (KSVDD) is used to establish the monitoring statistics and control limits. Two Bayesian inference based global fault detection indicators are then developed using the local monitoring results associated with principal and residual subspaces. Based on clustering analysis, Bayesian inference and manifold learning methods, the within and cross-mode correlations, and local geometric information can be exploited to enhance monitoring performances for nonlinear and non-Gaussian processes. The effectiveness and efficiency of the proposed method are evaluated using the Tennessee Eastman benchmark process.

Keywords

Multimode process monitoring / Local discriminant regularized soft k-means clustering / Kernel support vector data description / Bayesian inference / Tennessee Eastman process

Cite this article

Download citation ▾
Shi-jin REN, Yin LIANG, Xiang-jun ZHAO, Mao-yun YANG. A novel multimode process monitoring method integrating LDRSKM with Bayesian inference. Front. Inform. Technol. Electron. Eng, 2015, 16(8): 617‒633 https://doi.org/10.1631/FITEE.1400263

References

[1]
Cai, L.F., Tian, X.M., Zhang, N., 2014. A kernel time structure independent component analysis method for nonlinear process monitoring. Chin. J. Chem. Eng., 22(11-12): 1243―1253. [
CrossRef Google scholar
[2]
Chiang, L.H., Russell, E.L., Braatz, R.D., 2000. Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis. Chemometr. Intell. Lab. Syst., 50(2): 243―252. [
CrossRef Google scholar
[3]
Deng, X.G., Tian, X.M., 2013. Sparse kernel locality preserving projection and its application in nonlinear process fault detection. Chin. J. Chem. Eng., 21(2): 163―170. [
CrossRef Google scholar
[4]
Deng, X.G., Tian, X.M., Chen, S., 2013. Modified kernel principal component analysis based on local structure analysis and its application to nonlinear process fault diagnosis. Chemometr. Intell. Lab. Syst., 127: 195―209. [
CrossRef Google scholar
[5]
Dong, W.W., Yao, Y., Gao, F.R., 2012. Phase analysis and identification method for multiphase batch processes with partitioning multi-way principal component analysis (MPCA) model. Chin. J. Chem. Eng., 20(6): 1121―1127. [
CrossRef Google scholar
[6]
Downs, J.J., Vogel, E.F., 1993. A plant-wide industrial process control problem. Comput. Chem. Eng., 17(3): 245―255. [
CrossRef Google scholar
[7]
Feital, T., Kruger, U., Dutra, J., , 2013. Modeling and performance monitoring of multivariate multimodal processes. AIChE J., 59(5): 1557―1569. [
CrossRef Google scholar
[8]
Ge, Z.Q., Song, Z.H., 2010. Maximum-likelihood mixture factor analysis model and its application for process monitoring. Chemometr. Intell. Lab. Syst., 102(1): 53―61. [
CrossRef Google scholar
[9]
Ge, Z.Q., Song, Z.H., 2012. A distribution-free method for process monitoring. Exp. Syst. Appl., 38(8): 9812―9829. [
CrossRef Google scholar
[10]
Ge, Z.Q., Zhang, M.G., Song, Z.H., 2010. Nonlinear process monitoring based on linear subspace and Bayesian inference. J. Process Contr., 20(5): 676―688. [
CrossRef Google scholar
[11]
Ge, Z.Q., Song, Z.H., Gao, F.R., 2013. Review of recent research on data-based process monitoring. Ind. Eng. Chem. Res., 52(10): 3543―3562. [
CrossRef Google scholar
[12]
Ghosh, K., Ramteke, M., Srinivasan, R., 2014. Optimal variable selection for effective statistical process monitoring. Comput. Chem. Eng., 60: 260―276. [
CrossRef Google scholar
[13]
He, X.F., Cai, D., Shao, Y.L., , 2011. Laplacian regularized Gaussian mixture model for data clustering. IEEE Trans. Knowl. Data Eng., 23(9): 1406―1418. [
CrossRef Google scholar
[14]
Howland, P., Wang, J., Park, H., 2006. Solving the small sample size problem in face recognition using generalized discriminant analysis. Patt. Recog., 39(2): 277―287. [
CrossRef Google scholar
[15]
Jing, L.P., Ng, M.K., Huang, J.Z., 2007. An entropy weighting k-means algorithm for subspace clustering of highdimensional sparse data. IEEE Trans. Knowl. Data Eng., 19(8): 1026―1041. [
CrossRef Google scholar
[16]
Kano, M., Nagao, K., Hasebe, S., , 2002. Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem. Comput. Chem. Eng., 26(2): 161―174. [
CrossRef Google scholar
[17]
Kano, M., Fujioka, T., Tonomura, O., , 2007. Data-based and model-based blockage diagnosis for stacked microchemical processes. Chem. Eng. Sci., 62(4): 1073―1080. [
CrossRef Google scholar
[18]
Lee, D., Lee, J., 2007. Domain described support vector classifier for multi-classification problems. Patt. Recog., 40(1): 41―51. [
CrossRef Google scholar
[19]
Lee, J., Kang, B., Kang, S., 2011. Integrating independent component analysis and local outlier factor for plant-wide process monitoring. J. Process Contr., 21(7): 1011―1021. [
CrossRef Google scholar
[20]
Liu, J.L., Cai, D., He, X.F., 2010. Gaussian mixture model with local consistency. Proc. 24th AAAI Conf. on Artificial Intelligence, p.512―517.
[21]
Miao, A.M., Ge, Z.Q., Song, Z.H., , 2015. Nonlocal structure constrained neighborhood preserving embedding model and its application for fault detection. Chemometr. Intell. Lab. Syst., 142: 184―196. [
CrossRef Google scholar
[22]
Miyamoto, S., Mukaidono, M., 1997. Fuzzy C-means as a regularization and maximum entropy approach. Proc. IFSA, p.86―92.
[23]
Molina, G.D., Zumoffen, D.A.R., Basualdo, M.S., 2011. Plant-wide control strategy applied to the Tennessee Eastman process at two operating points. Comput. Chem. Eng., 35(10): 2081―2097. [
CrossRef Google scholar
[24]
Ng, Y.S., Srinivasan, R., 2009. An adjoined multi-model approach for monitoring batch and transient operations. Comput. Chem. Eng., 33(4): 887―902. [
CrossRef Google scholar
[25]
Perez, C.F.A., 2011. Fault Diagnosis with Reconstruction- Based Contributions for Statistical Process Monitoring. PhD Thesis, University of Southern California, USA.
[26]
Serradilla, J., Shi, J.Q., Morris, A.J., 2011. Fault detection based on Gaussian process latent variable models. Chemometr. Intell. Lab. Syst., 109(1): 9―21. [
CrossRef Google scholar
[27]
Shen, J.F., Bu, J.J., Ju, B., , 2012. Refining Gaussian mixture model based on enhanced manifold learning. Neurocomputing, 87: 19―25. [
CrossRef Google scholar
[28]
Song, B., Ma, Y.X., Shi, H.B., 2014. Multimode process monitoring using improved dynamic neighborhood preserving embedding. Chemometr. Intell. Lab. Syst., 135: 17―30. [
CrossRef Google scholar
[29]
Tan, S.C., Lim, C.P., Rao, M.V.C., 2007. A hybrid neural network model for rule generation and its application to process fault detection and diagnosis. Eng. Appl. Artif. Intell., 20(2): 203―213. [
CrossRef Google scholar
[30]
Teppola, P., Mujunen, S.P., Minkkinen, P., 1999. Adaptive fuzzy C-means clustering in process monitoring. Chemometr. Intell. Lab. Syst., 45(1-2): 23―38. [
CrossRef Google scholar
[31]
Tong, C.D., Palazoglu, A., Yan, X.F., 2013. An adaptive multimode process monitoring strategy based on mode clustering and mode unfolding. J. Process Contr., 23(10): 1497―1507. [
CrossRef Google scholar
[32]
Venkatasubramanian, V., Rengaswamy, R., Yin, K., , 2003. A review of process fault detection and diagnosis: Part I: quantitative model-based methods. Comput. Chem. Eng., 27(3): 293―311. [
CrossRef Google scholar
[33]
Xie, L., Liu, X.Q., Zhang, J.M., , 2009. Non-Gaussian process monitoring based on NGPP-SVDD. Acta Autom. Sin., 35(1): 107―112(in Chinese).
[34]
Xie, X., Shi, H.B., 2012. Multimode process monitoring based on fuzzy C-means in locality preserving projection subspace. Chin. J. Chem. Eng., 20(6): 1174―1179. [
CrossRef Google scholar
[35]
Xu, X., Xie, L., Wang, S., 2011. Multi-mode process monitoring method based on PCA mixture model. CIESC J., 62(3): 743―752 (in Chinese).
[36]
Yang, Y.H., Li, X., Liu, X.Z., , 2015. Wavelet kernel entropy component analysis with application to industrial process monitoring. Neurocomputing, 147: 395―402. [
CrossRef Google scholar
[37]
Yin, X.S., Chen, S.C., Hu, E.L., 2013. Regularized soft K-means for discriminant analysis. Neurocomputing, 103: 29―42. [
CrossRef Google scholar
[38]
Yu, J., 2012. A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes. Chem. Eng. Sci., 68(1): 506―519. [
CrossRef Google scholar
[39]
Zang, X., Vista Iv, F.P., Chong, K.T., 2014. Fast global kernel fuzzy c-means clustering algorithm for consonant/vowel segmentation of speech signal. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 15(7): 551―563. [
CrossRef Google scholar
[40]
Zhang, M., Ge, Z.Q., Song, Z.H., , 2011. Global-local structure analysis model and its application for fault detection and identification. Ind. Eng. Chem. Res., 50(11): 6837―6848. [
CrossRef Google scholar
[41]
Zhang, S.J., Wang, Z.L., Qian, F., 2010. FS-SVDD based on LTSA and its application to chemical process monitoring. CIESC J., 61(8): 1894―1900 (in Chinese).
[42]
Zhang, Y.W., 2009. Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM. Chem. Eng. Sci., 64(5): 801―811. [
CrossRef Google scholar
[43]
Zhang, Y.W., Li, S., 2014. Modeling and monitoring of nonlinear multi-mode processes. Contr. Eng. Pract., 22: 194―204. [
CrossRef Google scholar
[44]
Zhang, Y.W., An, J.Y., Li, Z.M., , 2013. Modeling and monitoring for handling nonlinear dynamic processes. Inform. Sci., 235: 97―105. [
CrossRef Google scholar
[45]
Zhu, Z.B., Wang, P.L., Song, Z.H., 2010. PCA-SVDD based fault detection and self-learning identification. J. Zhejiang Univ. (Eng. Sci.), 44(4): 652―658 (in Chinese).
[46]
Zhu, Z.B., Song, Z.H., Palazoglu, A., 2012. Process pattern construction and multi-mode monitoring. J. Process Contr., 22(1): 247―262. [
CrossRef Google scholar
PDF(754 KB)

Accesses

Citations

Detail

Sections
Recommended

/