A novel multimode process monitoring method integrating LDRSKM with Bayesian inference
Shi-jin REN, Yin LIANG, Xiang-jun ZHAO, Mao-yun YANG
A novel multimode process monitoring method integrating LDRSKM with Bayesian inference
A local discriminant regularized soft k-means (LDRSKM) method with Bayesian inference is proposed for multimode process monitoring. LDRSKM extends the regularized soft k-means algorithm by exploiting the local and non-local geometric information of the data and generalized linear discriminant analysis to provide a better and more meaningful data partition. LDRSKM can perform clustering and subspace selection simultaneously, enhancing the separability of data residing in different clusters. With the data partition obtained, kernel support vector data description (KSVDD) is used to establish the monitoring statistics and control limits. Two Bayesian inference based global fault detection indicators are then developed using the local monitoring results associated with principal and residual subspaces. Based on clustering analysis, Bayesian inference and manifold learning methods, the within and cross-mode correlations, and local geometric information can be exploited to enhance monitoring performances for nonlinear and non-Gaussian processes. The effectiveness and efficiency of the proposed method are evaluated using the Tennessee Eastman benchmark process.
Multimode process monitoring / Local discriminant regularized soft k-means clustering / Kernel support vector data description / Bayesian inference / Tennessee Eastman process
[1] |
Cai, L.F., Tian, X.M., Zhang, N., 2014. A kernel time structure independent component analysis method for nonlinear process monitoring. Chin. J. Chem. Eng., 22(11-12): 1243―1253. [
CrossRef
Google scholar
|
[2] |
Chiang, L.H., Russell, E.L., Braatz, R.D., 2000. Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis. Chemometr. Intell. Lab. Syst., 50(2): 243―252. [
CrossRef
Google scholar
|
[3] |
Deng, X.G., Tian, X.M., 2013. Sparse kernel locality preserving projection and its application in nonlinear process fault detection. Chin. J. Chem. Eng., 21(2): 163―170. [
CrossRef
Google scholar
|
[4] |
Deng, X.G., Tian, X.M., Chen, S., 2013. Modified kernel principal component analysis based on local structure analysis and its application to nonlinear process fault diagnosis. Chemometr. Intell. Lab. Syst., 127: 195―209. [
CrossRef
Google scholar
|
[5] |
Dong, W.W., Yao, Y., Gao, F.R., 2012. Phase analysis and identification method for multiphase batch processes with partitioning multi-way principal component analysis (MPCA) model. Chin. J. Chem. Eng., 20(6): 1121―1127. [
CrossRef
Google scholar
|
[6] |
Downs, J.J., Vogel, E.F., 1993. A plant-wide industrial process control problem. Comput. Chem. Eng., 17(3): 245―255. [
CrossRef
Google scholar
|
[7] |
Feital, T., Kruger, U., Dutra, J.,
CrossRef
Google scholar
|
[8] |
Ge, Z.Q., Song, Z.H., 2010. Maximum-likelihood mixture factor analysis model and its application for process monitoring. Chemometr. Intell. Lab. Syst., 102(1): 53―61. [
CrossRef
Google scholar
|
[9] |
Ge, Z.Q., Song, Z.H., 2012. A distribution-free method for process monitoring. Exp. Syst. Appl., 38(8): 9812―9829. [
CrossRef
Google scholar
|
[10] |
Ge, Z.Q., Zhang, M.G., Song, Z.H., 2010. Nonlinear process monitoring based on linear subspace and Bayesian inference. J. Process Contr., 20(5): 676―688. [
CrossRef
Google scholar
|
[11] |
Ge, Z.Q., Song, Z.H., Gao, F.R., 2013. Review of recent research on data-based process monitoring. Ind. Eng. Chem. Res., 52(10): 3543―3562. [
CrossRef
Google scholar
|
[12] |
Ghosh, K., Ramteke, M., Srinivasan, R., 2014. Optimal variable selection for effective statistical process monitoring. Comput. Chem. Eng., 60: 260―276. [
CrossRef
Google scholar
|
[13] |
He, X.F., Cai, D., Shao, Y.L.,
CrossRef
Google scholar
|
[14] |
Howland, P., Wang, J., Park, H., 2006. Solving the small sample size problem in face recognition using generalized discriminant analysis. Patt. Recog., 39(2): 277―287. [
CrossRef
Google scholar
|
[15] |
Jing, L.P., Ng, M.K., Huang, J.Z., 2007. An entropy weighting k-means algorithm for subspace clustering of highdimensional sparse data. IEEE Trans. Knowl. Data Eng., 19(8): 1026―1041. [
CrossRef
Google scholar
|
[16] |
Kano, M., Nagao, K., Hasebe, S.,
CrossRef
Google scholar
|
[17] |
Kano, M., Fujioka, T., Tonomura, O.,
CrossRef
Google scholar
|
[18] |
Lee, D., Lee, J., 2007. Domain described support vector classifier for multi-classification problems. Patt. Recog., 40(1): 41―51. [
CrossRef
Google scholar
|
[19] |
Lee, J., Kang, B., Kang, S., 2011. Integrating independent component analysis and local outlier factor for plant-wide process monitoring. J. Process Contr., 21(7): 1011―1021. [
CrossRef
Google scholar
|
[20] |
Liu, J.L., Cai, D., He, X.F., 2010. Gaussian mixture model with local consistency. Proc. 24th AAAI Conf. on Artificial Intelligence, p.512―517.
|
[21] |
Miao, A.M., Ge, Z.Q., Song, Z.H.,
CrossRef
Google scholar
|
[22] |
Miyamoto, S., Mukaidono, M., 1997. Fuzzy C-means as a regularization and maximum entropy approach. Proc. IFSA, p.86―92.
|
[23] |
Molina, G.D., Zumoffen, D.A.R., Basualdo, M.S., 2011. Plant-wide control strategy applied to the Tennessee Eastman process at two operating points. Comput. Chem. Eng., 35(10): 2081―2097. [
CrossRef
Google scholar
|
[24] |
Ng, Y.S., Srinivasan, R., 2009. An adjoined multi-model approach for monitoring batch and transient operations. Comput. Chem. Eng., 33(4): 887―902. [
CrossRef
Google scholar
|
[25] |
Perez, C.F.A., 2011. Fault Diagnosis with Reconstruction- Based Contributions for Statistical Process Monitoring. PhD Thesis, University of Southern California, USA.
|
[26] |
Serradilla, J., Shi, J.Q., Morris, A.J., 2011. Fault detection based on Gaussian process latent variable models. Chemometr. Intell. Lab. Syst., 109(1): 9―21. [
CrossRef
Google scholar
|
[27] |
Shen, J.F., Bu, J.J., Ju, B.,
CrossRef
Google scholar
|
[28] |
Song, B., Ma, Y.X., Shi, H.B., 2014. Multimode process monitoring using improved dynamic neighborhood preserving embedding. Chemometr. Intell. Lab. Syst., 135: 17―30. [
CrossRef
Google scholar
|
[29] |
Tan, S.C., Lim, C.P., Rao, M.V.C., 2007. A hybrid neural network model for rule generation and its application to process fault detection and diagnosis. Eng. Appl. Artif. Intell., 20(2): 203―213. [
CrossRef
Google scholar
|
[30] |
Teppola, P., Mujunen, S.P., Minkkinen, P., 1999. Adaptive fuzzy C-means clustering in process monitoring. Chemometr. Intell. Lab. Syst., 45(1-2): 23―38. [
CrossRef
Google scholar
|
[31] |
Tong, C.D., Palazoglu, A., Yan, X.F., 2013. An adaptive multimode process monitoring strategy based on mode clustering and mode unfolding. J. Process Contr., 23(10): 1497―1507. [
CrossRef
Google scholar
|
[32] |
Venkatasubramanian, V., Rengaswamy, R., Yin, K.,
CrossRef
Google scholar
|
[33] |
Xie, L., Liu, X.Q., Zhang, J.M.,
|
[34] |
Xie, X., Shi, H.B., 2012. Multimode process monitoring based on fuzzy C-means in locality preserving projection subspace. Chin. J. Chem. Eng., 20(6): 1174―1179. [
CrossRef
Google scholar
|
[35] |
Xu, X., Xie, L., Wang, S., 2011. Multi-mode process monitoring method based on PCA mixture model. CIESC J., 62(3): 743―752 (in Chinese).
|
[36] |
Yang, Y.H., Li, X., Liu, X.Z.,
CrossRef
Google scholar
|
[37] |
Yin, X.S., Chen, S.C., Hu, E.L., 2013. Regularized soft K-means for discriminant analysis. Neurocomputing, 103: 29―42. [
CrossRef
Google scholar
|
[38] |
Yu, J., 2012. A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes. Chem. Eng. Sci., 68(1): 506―519. [
CrossRef
Google scholar
|
[39] |
Zang, X., Vista Iv, F.P., Chong, K.T., 2014. Fast global kernel fuzzy c-means clustering algorithm for consonant/vowel segmentation of speech signal. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 15(7): 551―563. [
CrossRef
Google scholar
|
[40] |
Zhang, M., Ge, Z.Q., Song, Z.H.,
CrossRef
Google scholar
|
[41] |
Zhang, S.J., Wang, Z.L., Qian, F., 2010. FS-SVDD based on LTSA and its application to chemical process monitoring. CIESC J., 61(8): 1894―1900 (in Chinese).
|
[42] |
Zhang, Y.W., 2009. Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM. Chem. Eng. Sci., 64(5): 801―811. [
CrossRef
Google scholar
|
[43] |
Zhang, Y.W., Li, S., 2014. Modeling and monitoring of nonlinear multi-mode processes. Contr. Eng. Pract., 22: 194―204. [
CrossRef
Google scholar
|
[44] |
Zhang, Y.W., An, J.Y., Li, Z.M.,
CrossRef
Google scholar
|
[45] |
Zhu, Z.B., Wang, P.L., Song, Z.H., 2010. PCA-SVDD based fault detection and self-learning identification. J. Zhejiang Univ. (Eng. Sci.), 44(4): 652―658 (in Chinese).
|
[46] |
Zhu, Z.B., Song, Z.H., Palazoglu, A., 2012. Process pattern construction and multi-mode monitoring. J. Process Contr., 22(1): 247―262. [
CrossRef
Google scholar
|
/
〈 | 〉 |