Profiling and annotation combined method formultimedia application specificMPSoCperformance estimation

Kai HUANG, Xiao-xu ZHANG, Si-wen XIU, Dan-dan ZHENG, Min YU, De MA, Kai HUANG, Gang CHEN, Xiao-lang YAN

PDF(1109 KB)
PDF(1109 KB)
Front. Inform. Technol. Electron. Eng ›› 2015, Vol. 16 ›› Issue (2) : 135-151. DOI: 10.1631/FITEE.1400239
Orginal Article
Orginal Article

Profiling and annotation combined method formultimedia application specificMPSoCperformance estimation

Author information +
History +

Abstract

Accurate and fast performance estimation is necessary to drive design space exploration and thus support important design decisions. Current techniques are either time consuming or not accurate enough. In this paper, we solve these problems by presenting a hybrid method for multimedia multiprocessor system-on-chip (MPSoC) performance estimation. A general coverage analysis tool GNU gcov is employed to profile the execution statistics during the native simulation. To tackle the complexity and keep the analysis and simulation manageable, the orthogonalization of communication and computation parts is adopted. The estimation result of the computation part is annotated to a transaction accurate model for further analysis, by which a gradual refinement of MPSoC performance estimation is supported. The implementation and its experimental results prove the feasibility and efficiency of the proposed method.

Keywords

MPSoC / Gradual refinement / Native simulation / Performance estimation / Profiling / Annotation / Gcov

Cite this article

Download citation ▾
Kai HUANG, Xiao-xu ZHANG, Si-wen XIU, Dan-dan ZHENG, Min YU, De MA, Kai HUANG, Gang CHEN, Xiao-lang YAN. Profiling and annotation combined method formultimedia application specificMPSoCperformance estimation. Front. Inform. Technol. Electron. Eng, 2015, 16(2): 135‒151 https://doi.org/10.1631/FITEE.1400239

References

[1]
ARM, 2003. AMBA Axi Protocol Specification v1.0. Benini, L., Bertozzi, D., Bogliolo, A., , 2005.
[2]
MPARM: exploring the multi-processor SoC design space with SystemC. J. VLSI Signal Process. Syst. Signal Image Video Technol., 41(2): 169−182. [
CrossRef Google scholar
[3]
Cesário, W.O., Nicolescu, G., Gauthier, L., , 2001. Colif: a design representation for application-specific multiprocessor SoCs. IEEE Des. Test Comput., 18(5): 8−20. [
CrossRef Google scholar
[4]
C-SKY Microsystems, 2013. Ck803 Introduction.
[5]
Filho, S.J., Aguiar, A., Marcon, C.A., , 2008. Highlevel estimation of execution time and energy consumption for fast homogeneous MPSoCs prototyping. 19th IEEE/IFIP Int. Symp. on Rapid System Prototyping, p.27−33. [
CrossRef Google scholar
[6]
Fummi, F., Martini, S., Perbellini, G., , 2004. Native ISS-SystemC integration for the co-simulation of multi-processor SoC. Proc. Design, Automation and Test in Europe Conf. and Exhibition, p.564−569. [
CrossRef Google scholar
[7]
Gao, L., Karuri, K., Kraemer, S., , 2008. Multiprocessor performance estimation using hybrid simulation. Proc. 45th Annual Design Automation Conf., p.325−330. [
CrossRef Google scholar
[8]
Gerin, P., Guerin, X., Pétrot, F., 2008. Efficient implementation of native software simulation for MPSoC. Proc. Design, Automation and Test in Europe, p.676−681. [
CrossRef Google scholar
[9]
Gerin, P., Hamayun, M.M., Pétrot, F., 2009. Native MPSoC co-simulation environment for software performance estimation. Proc. 7th IEEE/ACM Int. Conf. on Hardware/Software Codesign and System Synthesis, p.403−412. [
CrossRef Google scholar
[10]
GNU, 2013. gcov—a Test Coverage Program. Available from http://gcc.gnu.org/onlinedocs/gcc/Gcov.html.
[11]
Han, S.I., Baghdadi, A., Bonaciu, M., , 2004. An efficient scalable and flexible data transfer architecture for multiprocessor SoC with massive distributed memory. Proc. 41st Annual Design Automation Conf., p.250−255. [
CrossRef Google scholar
[12]
Han, S.I., Chae, S.I., Jarraya, A.A., 2006. Functional modeling techniques for efficient SW code generation of video codec applications. Proc. Asia and South Pacific Design Automation Conf., p.935−940. [
CrossRef Google scholar
[13]
Han, S.I., Chae, S.I., Brisolara, L., , 2009. Simulinkbased heterogeneous multiprocessor SoC design flow for mixed hardware/software refinement and simulation. Integr. VLSI J., 42(2): 227−245. [
CrossRef Google scholar
[14]
Henia, R., Hamann, A., Jersak, M., , 2005. System level performance analysis—the SymTA/S approach. IEE Proc.-Comput. Dig. Tech., 152(2): 148−166. [
CrossRef Google scholar
[15]
Huang, K., Han, S.I., Popovici, K., , 2007. Simulinkbased MPSoC design flow: case study of Motion-JPEG and H.264. Proc. 44th Annual Conf. on Design Automation, p.39−42. [
CrossRef Google scholar
[16]
Huang, K., Yan, X.L., Han, S.I., , 2009. Gradual refinement for application-specific MPSoC design from Simulink model to RTL implementation. J. Zhejiang Univ.-Sci. A, 10(2): 151−164. [
CrossRef Google scholar
[17]
Huang, K., Haid, W., Bacivarov, I., , 2012. Embedding formal performance analysis into the design cycle of MPSoCs for real-time streaming applications. ACM Trans. Embed. Comput. Syst., 11(1), Article 8. [
CrossRef Google scholar
[18]
Jerraya, A., Wolf, W., 2004. Multiprocessor Systems-on-Chips. Elsevier.
[19]
Jerraya, A.A., Bouchhima, A., Petrot, F., 2006. Programming models and HW-SW interfaces abstraction for multi-processor SoC. 43rd ACM/IEEE Design Automation Conf., p.280−285. [
CrossRef Google scholar
[20]
Karuri, K., Al Faruque, M.A., Kraemer, S., , 2005. Fine-grained application source code profiling for ASIP design. Proc. 42nd Design Automation Conf., p.329−334. [
CrossRef Google scholar
[21]
Keutzer, K., Newton, A.R., Rabaey, J.M., , 2000. System-level design: orthogonalization of concerns and platform-based design. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst., 19(12): 1523−1543. [
CrossRef Google scholar
[22]
Kienhuis, B., Deprettere, E., Vissers, K., , 1997. An approach for quantitative analysis of application-specific dataflow architectures. Proc. IEEE Int. Conf. on Application-Specific Systems, Architectures and Processors, p.338−349. [
CrossRef Google scholar
[23]
Kirchsteiger, C.M., Schweitzer, H., Trummer, C., , 2008. A software performance simulation methodology for rapid system architecture exploration. 15th IEEE Int. Conf. on Electronics, Circuits and Systems, p.494−497. [
CrossRef Google scholar
[24]
Madl, G., Dutt, N., Abdelwahed, S., 2007. Performance estimation of distributed real-time embedded systems by discrete event simulations. Proc. 7th ACM & IEEE Int. Conf. on Embedded Software, p.183−192. [
CrossRef Google scholar
[25]
Oyamada, M., Wagner, F.R., Bonaciu, M., , 2007. Software performance estimation in MPSoC design. Proc. Asia and South Pacific Design Automation Conf., p.38−43. [
CrossRef Google scholar
[26]
Oyamada, M., Zschornack, F., Wagner, F., 2008. Applying neural networks to performance estimation of embedded software. J. Syst. Archit., 54(1−2): 224−240. [
CrossRef Google scholar
[27]
Patel, R., Rajawat, A., 2011. A survey of embedded software profiling methodologies. Int. J. Embed. Syst. Appl., 1(2): 19−40. [
CrossRef Google scholar
[28]
Piscitelli, R., Pimentel, A.D., 2012. Interleaving methods for hybrid system-level MPSoC design space exploration. Int. Conf. on Embedded Computer Systems, p.7−14. [
CrossRef Google scholar
[29]
Posadas, H., Herrera, F., Sanchez, P., , 2004. Systemlevel performance analysis in SystemC. Proc. Design, Automation and Test in Europe Conf. and Exhibition, 1: 378−383. [
CrossRef Google scholar
[30]
Richter, K., Jersak, M., Ernst, R., 2003. A formal approach to MPSoC performance verification. Computer, 36(4): 60−67. [
CrossRef Google scholar
[31]
Schnerr, J., Bringmann, O., Viehl, A., , 2008. Highperformance timing simulation of embedded software. Proc. 45th Annual Design Automation Conf., p.290−295. [
CrossRef Google scholar
[32]
Shen, H., Hamayun, M., Petrot, F., 2012. Native simulation of MPSoC using hardware-assisted virtualization. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst., 31(7): 1074−1087. [
CrossRef Google scholar
[33]
Wandeler, E., Thiele, L., Verhoef, M., , 2006. System architecture evaluation using modular performance analysis: a case study. Int. J. Softw. Tools Technol. Transfer, 8(6): 649−667. [
CrossRef Google scholar
[34]
Wilhelm, R., Engblom, J., Ermedahl, A., , 2008. The worst-case execution-time problem—overview of methods and survey of tools. ACMTrans. Embed. Comput. Syst., 7(3): 36. [
CrossRef Google scholar
[35]
Yang, H., Kim, S., Ha, S., 2010. An MILP-based performance analysis technique for non-preemptive multitasking MPSoC. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst., 29(10): 1600−1613. [
CrossRef Google scholar

RIGHTS & PERMISSIONS

2015 Higher Education Press
PDF(1109 KB)

Accesses

Citations

Detail

Sections
Recommended

/