Kd-tree and quad-tree decompositions for declustering of 2D range queries over uncertain space
Ahmet SAYAR, Süleyman EKEN, Okan ÖZTÜRK
Kd-tree and quad-tree decompositions for declustering of 2D range queries over uncertain space
We present a study to show the possibility of using two well-known space partitioning and indexing techniques, kd trees and quad trees, in declustering applications to increase input/output (I/O) parallelization and reduce spatial data processing times. This parallelization enables time-consuming computational geometry algorithms to be applied efficiently to big spatial data rendering and querying. The key challenge is how to balance the spatial processing load across a large number of worker nodes, given significant performance heterogeneity in nodes and processing skews in the workload.
Kd tree / Quad tree / Space partitioning / Spatial indexing / Range queries / Query optimization
[1] |
Bentley, J.L., 1975. Multidimensional binary search trees used for associative searching. Commun. ACM, 18(9): 509-517. [
CrossRef
Google scholar
|
[2] |
Beynon, M., Chang, C., Catalyurek, U.,
CrossRef
Google scholar
|
[3] |
Chakka, V.P., Everspaugh, A.C., Patel, J.M., 2003. Indexing large trajectory data sets with SETI. Proc. 1st Biennial Conf. on Innovative Data Systems Research.
|
[4] |
Chilès, J.P., Delfiner, P., 2009. Geostatistics: Modeling Spatial Uncertainty. John Wiley & Sons, New York, USA.
|
[5] |
Chou, T.C.K., Abraham, J.A., 1982. Load balancing in distributed systems. IEEE Trans. Softw. Eng., SE-8(4): 401-412. [
CrossRef
Google scholar
|
[6] |
Cudre-Mauroux, P., Wu, E., Madden, S., 2010. TrajStore: an adaptive storage system for very large trajectory data sets. Proc. IEEE 26th Int. Conf. on Data Engineering, p.109-120. [
CrossRef
Google scholar
|
[7] |
DeWitt, D., Gray, J., 1992. Parallel database systems: the future of high performance database systems. Commun. ACM, 35(6): 85-98. [
CrossRef
Google scholar
|
[8] |
Furht, B., Escalante, A., 2011. Handbook of Data Intensive Computing. Springer, New York, USA.
|
[9] |
Li, R., Bhanu, B., Ravishankar, C.,
CrossRef
Google scholar
|
[10] |
Moon, B., Saltz, J.H., 1998. Scalability analysis of declustering methods for multidimensional range queries. IEEE Trans. Knowl. Data Eng., 10(2): 310-327. [
CrossRef
Google scholar
|
[11] |
Ray, S., Simion, B., Brown, A.D.,
CrossRef
Google scholar
|
[12] |
Reich, B.J., Chang, H.H., Strickland, M.J., 2014. Spatial health effects analysis with uncertain residential locations. Stat. Methods Med. Res., 23(2): 156-168. [
CrossRef
Google scholar
|
[13] |
Samet, H., 2006. Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann, San Francisco, USA.
|
[14] |
Sayar, A., 2013. Fine-grained federation of geographic information services through metadata aggregation. Sci. Res. Essays, 8(46): 2242-2256.
|
[15] |
Sayar, A., Marlon, P., Geoffrey, F.C., 2014. An adaptive range-query optimization technique with distributed replicas. J. Cent. South Univ., 21(1): 190-198. [
CrossRef
Google scholar
|
[16] |
Sinha, R., Samaddar, S., Bhattacharyya, D.,
|
[17] |
Wang, L., Wu, P., Chen, H., 2013. Finding probabilistic prevalent colocations in spatially uncertain data sets. IEEE Trans. Knowl. Data Eng., 25(4): 790-804. [
CrossRef
Google scholar
|
[18] |
Wei, W., 2010. Analysis of spatial database index technology. Proc. 2nd Int. Conf. on Computer Engineering and Technology, p.29-32. [
CrossRef
Google scholar
|
[19] |
Zhang, Y., Lin, X., Zhang, W.,
CrossRef
Google scholar
|
[20] |
Zhong, Y., Han, J., Zhang, T.,
CrossRef
Google scholar
|
/
〈 | 〉 |