Kd-tree and quad-tree decompositions for declustering of 2D range queries over uncertain space

Ahmet SAYAR, Süleyman EKEN, Okan ÖZTÜRK

Front. Inform. Technol. Electron. Eng ›› 2015, Vol. 16 ›› Issue (2) : 98-108.

PDF(825 KB)
Front. Inform. Technol. Electron. Eng All Journals
PDF(825 KB)
Front. Inform. Technol. Electron. Eng ›› 2015, Vol. 16 ›› Issue (2) : 98-108. DOI: 10.1631/FITEE.1400165

Kd-tree and quad-tree decompositions for declustering of 2D range queries over uncertain space

Author information +
History +

Abstract

We present a study to show the possibility of using two well-known space partitioning and indexing techniques, kd trees and quad trees, in declustering applications to increase input/output (I/O) parallelization and reduce spatial data processing times. This parallelization enables time-consuming computational geometry algorithms to be applied efficiently to big spatial data rendering and querying. The key challenge is how to balance the spatial processing load across a large number of worker nodes, given significant performance heterogeneity in nodes and processing skews in the workload.

Keywords

Kd tree / Quad tree / Space partitioning / Spatial indexing / Range queries / Query optimization

Cite this article

Download citation ▾
Ahmet SAYAR, Süleyman EKEN, Okan ÖZTÜRK. Kd-tree and quad-tree decompositions for declustering of 2D range queries over uncertain space. Front.Inform.Technol.Electron.Eng, 2015, 16(2): 98‒108 https://doi.org/10.1631/FITEE.1400165
This is a preview of subscription content, contact us for subscripton.

References

[1]
Bentley, J.L., 1975. Multidimensional binary search trees used for associative searching. Commun. ACM, 18(9): 509-517. [
CrossRef Google scholar
[2]
Beynon, M., Chang, C., Catalyurek, U., , 2002. Processing large-scale multi-dimensional data in parallel and distributed environments. Parall. Comput., 28(5): 827-859. [
CrossRef Google scholar
[3]
Chakka, V.P., Everspaugh, A.C., Patel, J.M., 2003. Indexing large trajectory data sets with SETI. Proc. 1st Biennial Conf. on Innovative Data Systems Research.
[4]
Chilès, J.P., Delfiner, P., 2009. Geostatistics: Modeling Spatial Uncertainty. John Wiley & Sons, New York, USA.
[5]
Chou, T.C.K., Abraham, J.A., 1982. Load balancing in distributed systems. IEEE Trans. Softw. Eng., SE-8(4): 401-412. [
CrossRef Google scholar
[6]
Cudre-Mauroux, P., Wu, E., Madden, S., 2010. TrajStore: an adaptive storage system for very large trajectory data sets. Proc. IEEE 26th Int. Conf. on Data Engineering, p.109-120. [
CrossRef Google scholar
[7]
DeWitt, D., Gray, J., 1992. Parallel database systems: the future of high performance database systems. Commun. ACM, 35(6): 85-98. [
CrossRef Google scholar
[8]
Furht, B., Escalante, A., 2011. Handbook of Data Intensive Computing. Springer, New York, USA.
[9]
Li, R., Bhanu, B., Ravishankar, C., , 2007. Uncertain spatial data handling: modeling, indexing and query. Comput. Geosci., 33(1): 42-61. [
CrossRef Google scholar
[10]
Moon, B., Saltz, J.H., 1998. Scalability analysis of declustering methods for multidimensional range queries. IEEE Trans. Knowl. Data Eng., 10(2): 310-327. [
CrossRef Google scholar
[11]
Ray, S., Simion, B., Brown, A.D., , 2013. A parallel spatial data analysis infrastructure for the cloud. Proc. 21st ACM SIGSPATIAL Int. Conf. on Advances in Geographic Information Systems, p.284-293. [
CrossRef Google scholar
[12]
Reich, B.J., Chang, H.H., Strickland, M.J., 2014. Spatial health effects analysis with uncertain residential locations. Stat. Methods Med. Res., 23(2): 156-168. [
CrossRef Google scholar
[13]
Samet, H., 2006. Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann, San Francisco, USA.
[14]
Sayar, A., 2013. Fine-grained federation of geographic information services through metadata aggregation. Sci. Res. Essays, 8(46): 2242-2256.
[15]
Sayar, A., Marlon, P., Geoffrey, F.C., 2014. An adaptive range-query optimization technique with distributed replicas. J. Cent. South Univ., 21(1): 190-198. [
CrossRef Google scholar
[16]
Sinha, R., Samaddar, S., Bhattacharyya, D., , 2010. A tutorial on spatial data handling. Int. J. Database Theory Appl., 3(1): 1-12.
[17]
Wang, L., Wu, P., Chen, H., 2013. Finding probabilistic prevalent colocations in spatially uncertain data sets. IEEE Trans. Knowl. Data Eng., 25(4): 790-804. [
CrossRef Google scholar
[18]
Wei, W., 2010. Analysis of spatial database index technology. Proc. 2nd Int. Conf. on Computer Engineering and Technology, p.29-32. [
CrossRef Google scholar
[19]
Zhang, Y., Lin, X., Zhang, W., , 2010. Effectively indexing the uncertain space. IEEE Trans. Knowl. Data Eng., 22(9): 1247-1261. [
CrossRef Google scholar
[20]
Zhong, Y., Han, J., Zhang, T., , 2012. Towards parallel spatial query processing for big spatial data. Proc. IEEE 26th Int. Parallel and Distributed Processing Symp. Workshops & PhD Forum, p.2085-2094. [
CrossRef Google scholar
PDF(825 KB)

Supplementary files

Supplementary Material 1 (219 KB)

Supplementary Material 2 (891 KB)

2437

Accesses

5

Citations

Detail

Sections
Recommended

/