Kd-tree and quad-tree decompositions for declustering of 2D range queries over uncertain space

Ahmet SAYAR, Süleyman EKEN, Okan ÖZTÜRK

PDF(825 KB)
PDF(825 KB)
Front. Inform. Technol. Electron. Eng ›› 2015, Vol. 16 ›› Issue (2) : 98-108. DOI: 10.1631/FITEE.1400165

Kd-tree and quad-tree decompositions for declustering of 2D range queries over uncertain space

Author information +
History +

Abstract

We present a study to show the possibility of using two well-known space partitioning and indexing techniques, kd trees and quad trees, in declustering applications to increase input/output (I/O) parallelization and reduce spatial data processing times. This parallelization enables time-consuming computational geometry algorithms to be applied efficiently to big spatial data rendering and querying. The key challenge is how to balance the spatial processing load across a large number of worker nodes, given significant performance heterogeneity in nodes and processing skews in the workload.

Keywords

Kd tree / Quad tree / Space partitioning / Spatial indexing / Range queries / Query optimization

Cite this article

Download citation ▾
Ahmet SAYAR, Süleyman EKEN, Okan ÖZTÜRK. Kd-tree and quad-tree decompositions for declustering of 2D range queries over uncertain space. Front.Inform.Technol.Electron.Eng, 2015, 16(2): 98‒108 https://doi.org/10.1631/FITEE.1400165

References

[1]
Bentley, J.L., 1975. Multidimensional binary search trees used for associative searching. Commun. ACM, 18(9): 509-517. [
CrossRef Google scholar
[2]
Beynon, M., Chang, C., Catalyurek, U., , 2002. Processing large-scale multi-dimensional data in parallel and distributed environments. Parall. Comput., 28(5): 827-859. [
CrossRef Google scholar
[3]
Chakka, V.P., Everspaugh, A.C., Patel, J.M., 2003. Indexing large trajectory data sets with SETI. Proc. 1st Biennial Conf. on Innovative Data Systems Research.
[4]
Chilès, J.P., Delfiner, P., 2009. Geostatistics: Modeling Spatial Uncertainty. John Wiley & Sons, New York, USA.
[5]
Chou, T.C.K., Abraham, J.A., 1982. Load balancing in distributed systems. IEEE Trans. Softw. Eng., SE-8(4): 401-412. [
CrossRef Google scholar
[6]
Cudre-Mauroux, P., Wu, E., Madden, S., 2010. TrajStore: an adaptive storage system for very large trajectory data sets. Proc. IEEE 26th Int. Conf. on Data Engineering, p.109-120. [
CrossRef Google scholar
[7]
DeWitt, D., Gray, J., 1992. Parallel database systems: the future of high performance database systems. Commun. ACM, 35(6): 85-98. [
CrossRef Google scholar
[8]
Furht, B., Escalante, A., 2011. Handbook of Data Intensive Computing. Springer, New York, USA.
[9]
Li, R., Bhanu, B., Ravishankar, C., , 2007. Uncertain spatial data handling: modeling, indexing and query. Comput. Geosci., 33(1): 42-61. [
CrossRef Google scholar
[10]
Moon, B., Saltz, J.H., 1998. Scalability analysis of declustering methods for multidimensional range queries. IEEE Trans. Knowl. Data Eng., 10(2): 310-327. [
CrossRef Google scholar
[11]
Ray, S., Simion, B., Brown, A.D., , 2013. A parallel spatial data analysis infrastructure for the cloud. Proc. 21st ACM SIGSPATIAL Int. Conf. on Advances in Geographic Information Systems, p.284-293. [
CrossRef Google scholar
[12]
Reich, B.J., Chang, H.H., Strickland, M.J., 2014. Spatial health effects analysis with uncertain residential locations. Stat. Methods Med. Res., 23(2): 156-168. [
CrossRef Google scholar
[13]
Samet, H., 2006. Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann, San Francisco, USA.
[14]
Sayar, A., 2013. Fine-grained federation of geographic information services through metadata aggregation. Sci. Res. Essays, 8(46): 2242-2256.
[15]
Sayar, A., Marlon, P., Geoffrey, F.C., 2014. An adaptive range-query optimization technique with distributed replicas. J. Cent. South Univ., 21(1): 190-198. [
CrossRef Google scholar
[16]
Sinha, R., Samaddar, S., Bhattacharyya, D., , 2010. A tutorial on spatial data handling. Int. J. Database Theory Appl., 3(1): 1-12.
[17]
Wang, L., Wu, P., Chen, H., 2013. Finding probabilistic prevalent colocations in spatially uncertain data sets. IEEE Trans. Knowl. Data Eng., 25(4): 790-804. [
CrossRef Google scholar
[18]
Wei, W., 2010. Analysis of spatial database index technology. Proc. 2nd Int. Conf. on Computer Engineering and Technology, p.29-32. [
CrossRef Google scholar
[19]
Zhang, Y., Lin, X., Zhang, W., , 2010. Effectively indexing the uncertain space. IEEE Trans. Knowl. Data Eng., 22(9): 1247-1261. [
CrossRef Google scholar
[20]
Zhong, Y., Han, J., Zhang, T., , 2012. Towards parallel spatial query processing for big spatial data. Proc. IEEE 26th Int. Parallel and Distributed Processing Symp. Workshops & PhD Forum, p.2085-2094. [
CrossRef Google scholar
PDF(825 KB)

Accesses

Citations

Detail

Sections
Recommended

/