Incorporating Relative Error Criterion to Conformal Prediction for Positive Data

Yuxiang Luo , Yang Wei , Zhouping Li , Bing-Yi Jing

Communications in Mathematics and Statistics ›› 2023, Vol. 12 ›› Issue (1) : 157 -186.

PDF
Communications in Mathematics and Statistics ›› 2023, Vol. 12 ›› Issue (1) : 157 -186. DOI: 10.1007/s40304-023-00360-8
Article

Incorporating Relative Error Criterion to Conformal Prediction for Positive Data

Author information +
History +
PDF

Abstract

Positive data are very common in many scientific fields and applications; for these data, it is known that estimation and inference based on relative error criterion are superior to that of absolute error criterion. In prediction problems, conformal prediction provides a useful framework to construct flexible prediction intervals based on hypothesis testing, which has been actively studied in the past decade. In view of the advantages of the relative error criterion for regression problems with positive responses, in this paper, we combine the relative error criterion (REC) with conformal prediction to develop a novel REC-based predictive inference method to construct prediction intervals for the positive response. The proposed method satisfies the finite sample global coverage guarantee and to some extent achieves the local validity. We conduct extensive simulation studies and two real data analysis to demonstrate the competitiveness of the new proposed method.

Keywords

Conformal prediction / Neural network / Positive responses / Relative error criterion / Regression data

Cite this article

Download citation ▾
Yuxiang Luo, Yang Wei, Zhouping Li, Bing-Yi Jing. Incorporating Relative Error Criterion to Conformal Prediction for Positive Data. Communications in Mathematics and Statistics, 2023, 12(1): 157-186 DOI:10.1007/s40304-023-00360-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Angelopoulos, A.N., Bates, S.: A gentle introduction to conformal prediction and distribution-free uncertainty quantification. Preprint arXiv:2107.07511v4 (2022)

[2]

Barber, R.F., Candès, E.J., Ramdas, A., Tibshirani, R.J.: Conformal prediction beyond exchangeability. Preprint arXiv:2202.13415v2 (2022)

[3]

Barber RF, Candès EJ, Ramdas A, Tibshirani RJ. Predictive inference with the jackknife+. Ann. Stat.. 2021, 49 1 486-507

[4]

Bevilacqua M, Caamaño-Carrillo C, Gaetan C. On modeling positive continuous data with spatiotemporal dependence. Environmetrics. 2020, 31 7 e2632

[5]

Candès, E., Lei, L., Ren, Z.: Conformalized survival analysis. Preprint arXiv:2103.09763v2 (2021)

[6]

Chen Y, Liu H, Ma J. Local least product relative error estimation for single-index varying-coefficient multiplicative model with positive responses. J. Comput. Appl. Math.. 2022, 415

[7]

Chen K, Guo S, Lin Y, Ying Z. Least absolute relative error estimation. J. Am. Stat. Assoc.. 2010, 105 1104-1112

[8]

Chen K, Lin Y, Wang Z, Ying Z. Least product relative error estimation. J. Multivar. Anal.. 2016, 144 91-98

[9]

Chernozhukov V, Wüthrich K, Zhu Y. Exact and robust conformal inference methods for predictive machine learning with dependent data. Proc. Mach. Learn. Res.. 2018, 75 1-17

[10]

Demongeot J, Hamie A, Laksaci A, Rachdi M. Relative-error prediction in nonparametric functional statistics: theory and practice. J. Multivar. Anal.. 2016, 146 261-268

[11]

Diquigiovanni J, Fontana M, Vantini S. Conformal prediction bands for multivariate functional data. J. Multivar. Anal.. 2022, 189

[12]

Duy NL, Heidbüchel I, Meyer H, Merz B, Apel H. What controls the stable isotope composition of precipitation in the Mekong delta? A model-based statistical approach. Hydrol. Earth Syst. Sci.. 2018, 22 1239-1262

[13]

Fan J, Lin H, Zhou Y. Local partial-likelihood estimation for lifetime data. Ann. Stat.. 2006, 34 290-325

[14]

Fan, J., Gu, Y., Zhou, W.: How do noise tails impact on deep ReLU networks? Preprint arXiv:2203.10418v1 (2022)

[15]

Farrell M, Liang T, Misra S. Deep neural networks for estimation and inference. Econometrica. 2021, 89 1 181-213

[16]

Fontana, M., Zeni, G., Vantini, S.: Conformal prediction: a unified review of theory and new challenges. Preprint arXiv:2005.07972v2 (2020)

[17]

Gupta C, Kuchibhotla A, Ramdas A. Nested conformal prediction and quantile out-of-bag ensemble methods. Pattern Recogn.. 2022, 127

[18]

Guan, L.: Localized conformal prediction: a generalized inference framework for conformal prediction. Biometrika, (online). https://doi.org/10.1093/biomet/asac040 (2022)

[19]

Hu, X., Lei, J.: A distribution-free test of covariate shift using conformal prediction. Preprint arXiv:2010.07147v1 (2020)

[20]

Kong X, Liu Z, Zhou W. A rank test for the number of factors with high-frequency data. J. Econom.. 2019, 211 2 439-460

[21]

Lei J, Robins J, Wasserman L. Distribution free prediction sets. J. Am. Stat. Assoc.. 2013, 108 278-287

[22]

Lei J, Wasserman L. Distribution-free prediction bands for non-parametric regression. J. R. Stat. Soc. Ser. B. 2014, 76 1 71-96

[23]

Lei J, G’Sell M, Rinaldo A, Tibshirani RJ, Wasserman L. Distribution-free predictive inference for regression. J. Am. Stat. Assoc.. 2018, 113 523 1094-1111

[24]

Li Z, Lin Y, Zhou G, Zhou W. Empirical likelihood for least absolute relative error regression. Test. 2014, 23 86-99

[25]

Li Z, Liu Y, Liu Z. Empirical likelihood and general relative error criterion with divergent dimension. Statistics. 2017, 51 5 1006-1022

[26]

Liu H, Xia X. Estimation and empirical likelihood for single-index multiplicative models. J. Stat. Plan. Inference. 2018, 193 70-88

[27]

Mao, H., Martin, R., Reich, B.: Valid model-free spatial prediction. Preprint: arXiv:2006.15640v1 (2020)

[28]

Pryor SC, Barthelmie RJ. Climate change impacts on wind energy: review. Renew. Sustain. Energy Rev.. 2010, 14 430-437

[29]

Romano, Y., Patterson, E., Candés.: Conformalized quantile regression. Adv. Neural Inf. Process. Syst. 32 (2019). (NeurIPS 2019)

[30]

Sahu SK, Mardia KV. A Bayesian kriged Kalman model for short-term forecasting of air pollution levels. J. R. Stat. Soc. Ser. C. 2005, 54 223-244

[31]

Shafer G, Vovk V. A tutorial on conformal prediction. J. Mach. Learn. Res.. 2008, 9 371-421

[32]

Stone CJ. A course in probability and statistics. 1996 Belmont: Duxbury Press

[33]

Thiam B. Relative error prediction in nonparametric deconvolution regression model. Stat. Neerl.. 2019, 73 1 63-77

[34]

Tibshirani, R.J., Baber, R.F., Candès, E.J., Ramdas, A.: Conformal prediction under covariate shift. Preprint arXiv:1904.06019v3 (2020)

[35]

Vovk V. Cross-conformal predictors. Ann. Math. Artif. Intell.. 2015, 74 1–2 9-28

[36]

Vovk V, Gammerman A, Shafer G. Algorithmic learning in a random world. 2005 New York: Springer & Business Media

[37]

Wang Q, Hu D. LPRE criterion based estimating equation approaches for the error-in-covariables multiplicative regression models. Stat. Sin.. 2020, 30 2 955-975

[38]

Wang Z, Chen Z, Wu Y. A relative error estimation approach for multiplicative single index model. J. Syst. Sci. Complex.. 2017, 30 1160-1172

[39]

Xia X, Liu Z, Yang H. Regularized estimation for the least absolute relative error models with a diverging number of covariates. Comput. Stat. Data Anal.. 2016, 96 104-119

[40]

Yang B, Long W, Peng L, Cai Z. Testing the predictability of U.S. housing price index returns based on an IVX-AR model. J. Am. Stat. Assoc.. 2020, 115 532 1598-1619

[41]

Yang Y, Ye F. General relative error criterion and M-estimation. Front. Math. China. 2013, 8 695-715

[42]

Yang, Y., Kuchibhotla, A.: Finite-sample efficient conformal prediction. Preprint arXiv:2104.13871v2 (2021)

[43]

Zhang J, Feng Z, Peng H. Estimation and hypothesis test for partial linear multiplicative models. Comput. Stat. Data Anal.. 2018, 128 87-103

AI Summary AI Mindmap
PDF

413

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/