Incorporating Relative Error Criterion to Conformal Prediction for Positive Data
Yuxiang Luo, Yang Wei, Zhouping Li, Bing-Yi Jing
Incorporating Relative Error Criterion to Conformal Prediction for Positive Data
Positive data are very common in many scientific fields and applications; for these data, it is known that estimation and inference based on relative error criterion are superior to that of absolute error criterion. In prediction problems, conformal prediction provides a useful framework to construct flexible prediction intervals based on hypothesis testing, which has been actively studied in the past decade. In view of the advantages of the relative error criterion for regression problems with positive responses, in this paper, we combine the relative error criterion (REC) with conformal prediction to develop a novel REC-based predictive inference method to construct prediction intervals for the positive response. The proposed method satisfies the finite sample global coverage guarantee and to some extent achieves the local validity. We conduct extensive simulation studies and two real data analysis to demonstrate the competitiveness of the new proposed method.
Conformal prediction / Neural network / Positive responses / Relative error criterion / Regression data
[1.] |
Angelopoulos, A.N., Bates, S.: A gentle introduction to conformal prediction and distribution-free uncertainty quantification. Preprint arXiv:2107.07511v4 (2022)
|
[2.] |
Barber, R.F., Candès, E.J., Ramdas, A., Tibshirani, R.J.: Conformal prediction beyond exchangeability. Preprint arXiv:2202.13415v2 (2022)
|
[3.] |
|
[4.] |
|
[5.] |
Candès, E., Lei, L., Ren, Z.: Conformalized survival analysis. Preprint arXiv:2103.09763v2 (2021)
|
[6.] |
|
[7.] |
|
[8.] |
|
[9.] |
|
[10.] |
|
[11.] |
|
[12.] |
|
[13.] |
|
[14.] |
Fan, J., Gu, Y., Zhou, W.: How do noise tails impact on deep ReLU networks? Preprint arXiv:2203.10418v1 (2022)
|
[15.] |
|
[16.] |
Fontana, M., Zeni, G., Vantini, S.: Conformal prediction: a unified review of theory and new challenges. Preprint arXiv:2005.07972v2 (2020)
|
[17.] |
|
[18.] |
Guan, L.: Localized conformal prediction: a generalized inference framework for conformal prediction. Biometrika, (online). https://doi.org/10.1093/biomet/asac040 (2022)
|
[19.] |
Hu, X., Lei, J.: A distribution-free test of covariate shift using conformal prediction. Preprint arXiv:2010.07147v1 (2020)
|
[20.] |
|
[21.] |
|
[22.] |
|
[23.] |
|
[24.] |
|
[25.] |
|
[26.] |
|
[27.] |
Mao, H., Martin, R., Reich, B.: Valid model-free spatial prediction. Preprint: arXiv:2006.15640v1 (2020)
|
[28.] |
|
[29.] |
Romano, Y., Patterson, E., Candés.: Conformalized quantile regression. Adv. Neural Inf. Process. Syst. 32 (2019). (NeurIPS 2019)
|
[30.] |
|
[31.] |
|
[32.] |
|
[33.] |
|
[34.] |
Tibshirani, R.J., Baber, R.F., Candès, E.J., Ramdas, A.: Conformal prediction under covariate shift. Preprint arXiv:1904.06019v3 (2020)
|
[35.] |
|
[36.] |
|
[37.] |
|
[38.] |
|
[39.] |
|
[40.] |
|
[41.] |
|
[42.] |
Yang, Y., Kuchibhotla, A.: Finite-sample efficient conformal prediction. Preprint arXiv:2104.13871v2 (2021)
|
[43.] |
|
/
〈 | 〉 |