An Algorithm to Compute the

μ
-Bases of Rational Parametric Surfaces with Respect to One Variable

Bingru Huang, Falai Chen

Communications in Mathematics and Statistics ›› 2023, Vol. 12 ›› Issue (3) : 523-541. DOI: 10.1007/s40304-022-00300-y
Article

An Algorithm to Compute the

μ
-Bases of Rational Parametric Surfaces with Respect to One Variable

Author information +
History +

Abstract

The method of moving surfaces is an effective tool to implicitize rational parametric surfaces, and it has been extensively studied in the past two decades. An essential step in surface implicitization using the method of moving surfaces is to compute a

μ
-basis of a parametric surface with respect to one variable. The
μ
-basis is a minimal basis of the syzygy module of a univariate polynomial matrix with special structure defined by the parametric equation of the rational surface. In this paper, we present an efficient algorithm to compute the
μ
-basis of a parametric surface with respect to a variable based on the special structure of the corresponding univariate polynomial matrix. Analysis on the computational complexity of the algorithm is also provided. Experiments demonstrate that our algorithm is much faster than the general method to compute the
μ
-bases of arbitrary polynomial matrices and outperforms the
F 5
algorithm based on Gröbner basis computation for relatively low degree rational surfaces.

Keywords

Rational surface / Implicitization /

-basis / Polynomial matrix factorization

Cite this article

Download citation ▾
Bingru Huang, Falai Chen. An Algorithm to Compute the
μ
-Bases of Rational Parametric Surfaces with Respect to One Variable. Communications in Mathematics and Statistics, 2023, 12(3): 523‒541 https://doi.org/10.1007/s40304-022-00300-y

References

[1.]
Botbol N, Dickenstein A. Implicitization of rational hypersurfaces via linear syzygies: a practical overview. J. Symb. Comput., 2016, 74: 493-512,
CrossRef Google scholar
[2.]
Busé L, Chen F. Determinantal tensor product surfaces and the method of moving quadrics. Trans. Am. Math. Soc., 2021, 374(7): 4931-4952,
CrossRef Google scholar
[3.]
Busé L, Cox DA, D’Andrea C. Implicitization of surfaces in P 3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ P}^3$$\end{document} in the presence of base points. J. Algebra Appl., 2003, 2(2): 189-214,
CrossRef Google scholar
[4.]
Busé, L., Dohm, M.: Implicitization of bihomegenous parametrizations of algebraic surfaces via linear syzygies. In: Proceedings of the 2007 International Symposium on Symbolic and Algebraic Computation. pp. 69–76 (2007)
[5.]
Chen F. Recent advances on surface implicitization. J. Univ. Sci. Technol. China, 2014, 44: 345-361
[6.]
Chen F, Cox D, Liu Y. The μ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-basis and implicitization of a rational parametric surface. J. Symb. Comput., 2005, 39(6): 689-706,
CrossRef Google scholar
[7.]
Chen F, Wang W. The μ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-basis of a planar rational curve properties and computation. Graph Models, 2002, 64(6): 368-381,
CrossRef Google scholar
[8.]
Chen F, Zheng J, Sederberg T. The μ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-basis of a rational ruled surface. Comput. Aided Geom. Des., 2001, 18(1): 61-72,
CrossRef Google scholar
[9.]
Cox D, Goldman R, Zhang M. On the validity of implicitization by moving quadrics for rational surfaces with no base points. J. Symb. Comput., 2000, 29(3): 419-440,
CrossRef Google scholar
[10.]
Cox D, Little J, O’Shea D. . Using Algebraic Geometry, 2005 New York Springer
[11.]
Cox D, Sederberg T, Chen F. The moving line ideal basis of planar rational curves. Comput. Aided Geom. Des., 1998, 15(8): 803-827,
CrossRef Google scholar
[12.]
D’Andrea C. Resultants and moving surfaces. J. Symb. Comput., 2001, 31(5): 585-602,
CrossRef Google scholar
[13.]
Deng, J., Chen, F., Shen, L.: Computing μ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-bases of rational curves and surfaces using polynomial matrix factorization. In: Proceedings of the 2005 International Symposium on Symbolic and Algebraic Computation, pp. 132–139 (2005)
[14.]
Faugère J.C.: A new efficient algorithm for computing Göebner bases without reduction to zero ( F 5 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_5$$\end{document}). In: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, pp. 75–83 (2002)
[15.]
Hong H, Hough Z, Kogan I. Algorithm for computing μ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-bases of univariate polynomials. J. Symb. Comput., 2017, 80: 844-874,
CrossRef Google scholar
[16.]
Huang B, Chen F. Computing μ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-bases of univariate polynomial matrices using polynomial matrix factorization. Syst. Sci. Complex, 2021, 34(3): 1189-1206,
CrossRef Google scholar
[17.]
Jia X. Role of moving planes and moving spheres following dupin cyclides. Comput. Aided Geom. Des., 2014, 31(3–4): 168-181,
CrossRef Google scholar
[18.]
Jia X, Goldman R. μ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-Bases and singularities of rational planar curves. Comput. Aided Geom. Des., 2009, 26(9): 970-988,
CrossRef Google scholar
[19.]
Jia X, Goldman R. Using Smith normal forms and μ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-bases to compute all the singularities of rational planar curves. Comput. Aided Geom. Des., 2012, 29(6): 296-314,
CrossRef Google scholar
[20.]
Jia X, Shi X, Chen F. Survey on the theory and applications of μ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-bases for rational curves and surfaces. J. Comput. Appl. Math., 2017, 329: 2-23,
CrossRef Google scholar
[21.]
Kriezis GA, Prakash PV, Patrikalakis NM. Method for intersecting algebraic surfaces with rational polynomial patches. Comput. Aided Des., 1990, 22(10): 645-654,
CrossRef Google scholar
[22.]
Krishnan S, Manocha D. An efficient surface intersection algorithm based on lower-dimensional formulation. ACM Trans. Graph., 1997, 16(1): 74-106,
CrossRef Google scholar
[23.]
Lai Y, Chen F. An improved algorithm for constructing moving quadrics from moving planes. J. Syst. Sci. Complex, 2017, 30(6): 1483-1506,
CrossRef Google scholar
[24.]
Lai Y, Chen F, Shi X. Implicitizing rational surfaces using moving quadrics constructed from moving planes. J. Symb. Comput., 2016, 77: 127-161,
CrossRef Google scholar
[25.]
Lai Y, Chen F, Shi X. Implicitizing rational surfaces without base points by moving planes and moving quadrics. Comput. Aided Geom. Des., 2019, 70: 1-15,
CrossRef Google scholar
[26.]
Lai, Y., Chen, F., Shi, X., Gao, Y.: A constructive approach to implicitizing rational surfaces with LCI base points by moving planes and moving quadrics. Comput. Aided Geom. Des. 92(Jan.), 102051 (2022)
[27.]
Sederberg, T., Chen, F.: Implicitization using moving curves and surfaces. In: Proceedings of SIGGRAPH, pp. 301–308 (1995)
[28.]
Sederberg T, Saito T, Qi D, Klimaszewski K. Curve implicitization using moving lines. Comput. Aided Geom. Des., 1994, 11(6): 687-706,
CrossRef Google scholar
[29.]
Shen L, Goldman R. Implicitizing rational tensor product surfaces using the resultant of three moving planes. ACM Trans. Graph., 2017, 36(5): 1-167,
CrossRef Google scholar
[30.]
Song N, Chen F, Goldman R. Axial moving lines and singularities of rational planar curves. Comput. Aided Geom. Des., 2007, 24(4): 200-209,
CrossRef Google scholar
[31.]
Song N, Goldman R. μ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-bases for polynomial systems in one variable. Comput. Aided Geom. Des., 2009, 26(2): 217-230,
CrossRef Google scholar
Funding
National Natural Science Foundation of China(No. 61972368.)

Accesses

Citations

Detail

Sections
Recommended

/